(courtsey www.w3schools.com)

ADO Tutorial

ADO Tutorial

In our ADO tutorial you will learn about ADO, and how to use ADO to access databases from your Web. Start Learning ADO!
ADO References

At W3Schools you will find complete ADO references about built-in objects, and their properties and methods. ADO Object References.

ADO Examples

Learn by examples! Because ASP scripts are executed on the server, you can not view ASP code in a browser, you will only see the output from ASP which is plain HTML. At W3Schools every example displays the hidden ASP code. This will make it easier for you to understand how it works. ADO Examples!

Table of Contents

ADO Introduction
This chapter explains what ADO is, and how it can be used.

ADO Database Connection
This chapter explains how to connect to a database using ADO.

ADO Recordset
This chapter explains how to access an ADO Recordset.

ADO Display
This chapter explains the most common way to display data from an ADO Recordset.

ADO Query
This chapter explains how to use SQL to filter an ADO Recordset.

ADO Sort
This chapter explains how to use SQL to sort an ADO Recordset.

ADO Demonstration
This chapter demonstrates how ADO can be used.

ADO Object References

ADO Command object
The Command object is used to execute a query against a data source. The query can perform actions like creating, adding, retrieving, deleting or updating records. The Command object can also use stored queries and procedures with parameters.

ADO Connection object
The Connection Object is used to create a connection to a data source.

ADO Error object
The Error object contains details about data access errors that have been generated during a single operation.

ADO Field object
The Field object contains information about a column in a Recordset.

ADO Parameter object
The Parameter object contains information about a parameter used in a stored procedure or query.

ADO Property object
The Property object represents a dynamic characteristic of an ADO object that is defined by the provider.

ADO Record object
The Record object is used to hold a row in a Recordset, or a directory or file in a file system.

ADO Recordset object
The Recordset Object is used to hold a set of records from a database table.

ADO Stream object
The Stream Object is used to hold a stream of text or binary data.

Introduction to ADO

ADO can be used to access databases from your web pages.

What you should already know

Before you continue you should have a basic understanding of the following:

· WWW, HTML and the basics of building Web pages

· Active Server Pages (ASP)

· Structured Query Language (SQL)

If you want to study these subjects first, go to our Home Page

What is ADO?

· ADO is a Microsoft technology

· ADO stands for ActiveX Data Objects

· ADO is a Microsoft Active-X component

· ADO is automatically installed with Microsoft IIS

· ADO is a programming interface to access data in a database

Accessing a Database from an ASP Page

The common way to access a database from inside an ASP page is to:

1. Create an ADO connection to a database

2. Open the database connection

3. Create an ADO recordset

4. Open the recordset

5. Extract the data you need from the recordset

6. Close the recordset

7. Close the connection

ADO Database Connection

Before a database can be accessed from a web page, a database connection has to be established.

Create a DSN-less Database Connection

The easiest way to connect to a database is to use a DSN-less connection. A DSN-less connection can be used against any Microsoft Access database on your web site.

If you have a database called "northwind.mdb" located in a web directory like "c:/webdata/", you can connect to the database with the following ASP code:

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

%>

Note, from the example above, that you have to specify the Microsoft Access database driver (Provider) and the physical path to the database on your computer.

Create an ODBC Database Connection

If you have an ODBC database called "northwind" you can connect to the database with the following ASP code:

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Open "northwind"

%>

With an ODBC connection, you can connect to any database, on any computer in your network, as long as an ODBC connection is available.

An ODBC Connection to a MS Access Database

Here is how to create a connection to a MS Access Database:

1. Open the ODBC icon in your Control Panel.

2. Choose the System DSN tab.

3. Click on Add in the System DSN tab.

4. Select the Microsoft Access Driver. Click Finish.

5. In the next screen, click Select to locate the database.

6. Give the database a Data Source Name (DSN).

7. Click OK.

Note that this configuration has to be done on the computer where your web site is located. If you are running Personal Web Server (PWS) or Internet Information Server (IIS) on your own computer, the instructions above will work, but if your web site is located on a remote server, you have to have physical access to that server, or ask your web host to do this for you.

The ADO Connection Object

The ADO Connection object is used to create an open connection to a data source. Through this connection, you can access and manipulate a database.

View all methods and properties of the Connection object.

ADO Connection Object

Connection Object

The ADO Connection Object is used to create an open connection to a data source. Through this connection, you can access and manipulate a database.

If you want to access a database multiple times, you should establish a connection using the Connection object. You can also make a connection to a database by passing a connection string via a Command or Recordset object. However, this type of connection is only good for one specific, single query.

ProgID

	set objConnection=Server.CreateObject("ADODB.connection")

Properties

	Property
	Description

	Attributes
	Sets or returns the attributes of a Connection object

	CommandTimeout
	Sets or returns the number of seconds to wait while attempting to execute a command

	ConnectionString
	Sets or returns the details used to create a connection to a data source

	ConnectionTimeout
	Sets or returns the number of seconds to wait for a connection to open

	CursorLocation
	Sets or returns the location of the cursor service

	DefaultDatabase
	Sets or returns the default database name

	IsolationLevel
	Sets or returns the isolation level

	Mode
	Sets or returns the provider access permission

	Provider
	Sets or returns the provider name

	State
	Returns a value describing if the connection is open or closed

	Version
	Returns the ADO version number

The Attributes Property

The Attributes property sets or returns a long value that indicates one or more characteristics of an object.

Note: When setting multiple attributes, it is possible to sum the values.

	Object
	Description of the Attributes Property

	Connection
	The Attributes property has read/write permissions on a Connection object. Its value can be the sum of one or more XactAttributeEnum values. Default value is 0

	Parameter
	The Attributes property has read/write permissions on a Parameter object. Its value can be the sum of one or more ParameterAttributesEnum values. Default value is adParamSigned

	Field
	The Attributes property has read/write permissions when used to create a Recordset, but it has read-only permissions when you open an existing Recordset. Its value can be the sum of one or more FieldAttributeEnum values

	Property
	The Attributes property is read-only for a Property object. Its value can be the sum of one or more PropertyAttributesEnum values

Syntax

	object.Attributes

Example

	For a Connection object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

response.write(conn.Attributes)

conn.close

%>

For a Field object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.Recordset")

rs.open "Select * from orders", conn

set f=Server.CreateObject("ADODB.Field")

'Display the field attributes of the Orders Table

for each f in rs.Fields

 response.write("Attr:" & f.Attributes & "
")

 response.write("Name:" & f.Name & "
")

 response.write("Value:" & f.Value & "
")

Next

rs.Close

conn.close

set rs=nothing

set conn=nothing

%>

For a Property object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.Recordset")

rs.open "Select * from orders", conn

set prop=Server.CreateObject("ADODB.Property")

'Display the property attributes of the Orders Table

for each prop in rs.Properties

 response.write("Attr:" & prop.Attributes & "
")

 response.write("Name:" & prop.Name & "
")

 response.write("Value:" & prop.Value & "
")

next
rs.close

conn.close

set rs=nothing

set conn=nothing

%>

XactAttributeEnum Values

	Constant
	Value
	Description

	adXactAbortRetaining
	262144
	When calling RollbackTrans it automatically starts a new transaction.

	adXactCommitRetaining
	131072
	When calling CommitTrans it automatically starts a new transaction.

ParameterAttributesEnum Values

	Constant
	Value
	Description

	adParamSigned
	16
	The parameter will accept signed values.

	adParamNullable
	64
	The parameter will accept null values.

	adParamLong
	128
	The parameter will accept long binary data.

FieldAttributeEnum Values

	Constant
	Value
	Description

	adFldCacheDeferred
	0x1000
	Provider caches the field values and reads from the cache.

	adFldFixed
	0x10
	Field contains fixed-length data.

	adFldIsChapter
	0x2000
	Field contains a chapter value that specifies a child recordset.

	adFldIsCollection
	0x40000
	The field specifies that the resource represented by the record is a collection of resources

	adFldIsDefaultStream
	0x20000
	Field contains the default stream for the resource represented by the record.

	adFldIsNullable
	0x20
	Field accepts null values.

	adFldIsRowURL
	0x10000
	Field contains the URL that names the resource from the data store represented by the record.

	adFldLong
	0x80
	Field is a long binary field.

	adFldMayBeNull
	0x40
	You can read null values from the field.

	adFldMayDefer
	0x2
	Field values are not retrieved from the data source with the whole record, but only when you explicitly access them.

	adFldNegativeScale
	0x4000
	Field represents a numeric value from a column that supports negative scale values.

	adFldRowID
	0x100
	Field contains a persistent row identifier that cannot be written to and has no meaningful value except to identify the row (such as a unique id)

	adFldRowVersion
	0x200
	Field contains some kind of time/date stamp used to track updates.

	adFldUnknownUpdatable
	0x8
	The provider cannot determine if you can write to the field.

	adFldUnspecified
	 -1
0xFFFFFFFF
	Provider does not specify the field attributes.

	adFldUpdatable
	0x4
	You can write to the field.

PropertyAttributesEnum Values

	Constant
	Value
	Description

	adPropNotSupported
	0
	The property is not supported by the provider.

	adPropRequired
	1
	The user must specify a value for this property before the data source is initialized.

	adPropOptional
	2
	The user does not need to specify a value for this property before the data source is initialized.

	adPropRead
	512
	The user can read the property.

	adPropWrite
	1024
	The user can set the property.

The CommandTimeout Property

The CommandTimeout property sets or returns the number of seconds to wait while attempting to execute a command, before canceling the attempt and generate an error. Default is 30.

Syntax

	object.CommandTimeout

Example

	For a Command object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set comm=Server.CreateObject("ADODB.Command")

comm.CommandTimeout=10

response.write(comm.CommandTimeout)

conn.close

%>

For a Connection object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

conn.CommandTimeout=10

response.write(conn.CommandTimeout)

conn.close

%>

The ConnectionString Property

The ConnectionString property sets or returns the details used to create a connection to a data source.

Note: You can not use both the Provider and File Name parameters.

Syntax

	objconn.ConnectionString="para1=value;para2=value;etc;"

The ConnectionString property has these parameters:

	Parameter
	Description

	Provider
	The provider to use for the connection

	File Name
	A provider-specific file that contains connection information

	Remote Provider
	The provider to use when opening a client-side connection

	Remote Server
	A path name of the server to use when opening a client-side connection

	url
	An absolute URL identifying a resource, such as a file or directory

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0"

conn.open server.mappath("database.mdb")

conn.close

%>

The ConnectionTimeout Property

The ConnectionTimeout property sets or returns the number of seconds to wait for a connection to open, before canceling the attempt and generate an error. Default is 15 seconds.

Syntax

	objconn.ConnectionTimeout

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0"

conn.ConnectionTimeout=30

conn.open server.mappath("database.mdb")

conn.close

%>

The CursorLocation Property

The CursorLocation property sets or returns a long value that indicates the location of the cursor service. It can be set to one of the CursorLocationEnum values. Default value is AdUseServer.

A cursor is used to:

· control record navigation

· control the visibility of changes in the database

· control the updatability of data

Note: A Recordset object inherits this setting from the associated Connection object.

Note: This property is read-only on an open Recordset object, and read/write on a Connection object or on a closed Recordset object.

Syntax

	objConnection.CursorLocation
objRecordset.CursorLocation

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation=adUseClient

rs.CursorType=adOpenStatic

rs.LockType=adLockBatchOptimistic

rs.Open sql,conn

rs.Close

conn.Close

%>

CursorLocationEnum Values

	Constant
	Value
	Description

	adUseNone
	1
	OBSOLETE (appears only for backward compatibility). Does not use cursor services

	adUseServer
	2
	Default. Uses a server-side cursor

	adUseClient
	3
	Uses a client-side cursor supplied by a local cursor library. For backward compatibility, the synonym adUseClientBatch is also supported

The DefaultDatabase Property

The DefaultDatabase property sets or returns a string value that is the default database for a specific server-side connection.

Syntax

	objconn.DefaultDatabase

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.DefaultDatabase="northwind"

set rs=Server.CreateObject("ADODB.Recordset")

rs.Open "customers",conn

....

rs.Close

conn.close

%>

The IsolationLevel Property

The IsolationLevel property sets or returns the isolation level of a Connection object. The value is an IsolationLevelEnum value. Default is adXactChaos.

Note: The IsolationLevel settings will not work until next time BeginTrans is called.

Syntax

	objconn.IsolationLevel

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.IsolationLevel=adXactIsolated

conn.Open(Server.Mappath("northwind.mdb"))

response.write(conn.IsolationLevel)

conn.Close

%>

IsolationLevelEnum

	Constant
	Value
	Description

	adXactUnspecified
	-1
	Cannot use the specified isolation level, because the provider is using a different isolation level, and that level cannot be determined.

	adXactChaos
	16
	Cannot overwrite higher level transactions.

	adXactBrowse
	256
	Can view uncommitted changes in other transactions.

	adXactReadUncommitted
	256
	Same as adXactBrowse.

	adXactCursorStability
	4096
	Can view committed changes in other transactions.

	adXactReadCommitted
	4096
	Same as adXactCursorStability.

	adXactRepeatableRead
	65536
	Cannot see changes in other transactions, but you can requery

	adXactIsolated
	1048576
	Your transactions are isolated from all other transactions.

	adXactSerializable
	1048576
	Same as adXactIsolated.

The Mode Property

The Mode property sets or returns a ConnectModeEnum value that indicates the permission for modifying data in a Connection, Record, or Stream object. This property is read/write when an object is closed, and read-only when an object is open.

· Connection object - Default is adModeUnknown

· Record object - Default is adModeRead

· Stream object - Default is adModeRead or adModeUnknown

Note: This property can be set only when the Connection object is closed.

Syntax

	object.Mode

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Mode=adModeReadWrite

conn.Open(Server.Mappath("northwind.mdb"))

response.write(conn.Mode)

conn.Close

%>

ConnectModeEnum

	Constant
	Value
	Description

	adModeUnknown
	0
	Permissions have not been set or cannot be determined.

	adModeRead
	1
	Read-only.

	adModeWrite
	2
	Write-only.

	adModeReadWrite
	3
	Read/write.

	adModeShareDenyRead
	4
	Prevents others from opening a connection with read permissions.

	adModeShareDenyWrite
	8
	Prevents others from opening a connection with write permissions.

	adModeShareExclusive
	12
	Prevents others from opening a connection.

	adModeShareDenyNone
	16
	Allows others to open a connection with any permissions.

	adModeRecursive
	0x400000
	Used with adModeShareDenyNone, adModeShareDenyWrite, or adModeShareDenyRead to set permissions on all sub-records of the current Record.

The Provider Property

The Provider property sets or returns a string value that contains the provider name for a specific Connection object. Default is MSDASQL (Microsoft OLE DB provider for ODBC). Look at Provider Codes

This property is read/write when the connection is closed.

The provider name can also be set with the ConnectionString property of the Connection object or the ConnectionString parameter of the Open method.

Note: Never set the provider for a specific Connection in more than one place.

Syntax

	connobj.Provider

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

response.write(conn.Provider)

conn.close

%>

Provider Codes

	Provider Code
	Provider

	ADSDSOObject
	Active Directory Services

	Microsoft.Jet.OLEDB.4.0
	Microsoft Jet databases

	MSDAIPP.DSO.1
	Microsoft Internet Publishing

	MSDAORA
	Oracle databases

	MSDAOSP
	Simple text files

	MSDASQL
	Microsoft OLE DB provider for ODBC

	MSDataShape
	Microsoft Data Shape

	MSPersist
	Locally saved files

	SQLOLEDB
	Microsoft SQL Server

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

This property can be used with the Command, Connection, Record, Recordset, and Stream object.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

	object.State

Example

	For a Command object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set comm=Server.CreateObject("ADODB.Command")

response.write(comm.State)

conn.close

%>

For a Connection object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

response.write(conn.State)

conn.close

%>

ObjectStateEnum Values

Specifies whether an object is open or closed, connecting to a data source, executing a command, or retrieving data.

	Constant
	Value
	Description

	adStateClosed
	0
	The object is closed

	adStateOpen
	1
	The object is open

	adStateConnecting
	2
	The object is connecting

	adStateExecuting
	4
	The object is executing a command

	adStateFetching
	8
	The rows of the object are being retrieved

The Version Property

The Version property returns the ADO version number.

Syntax

	version=objconn.Version

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

response.write(conn.Version)

conn.close

%>

Methods

	Method
	Description

	BeginTrans
	Begins a new transaction

	Cancel
	Cancels an execution

	Close
	Closes a connection

	CommitTrans
	Saves any changes and ends the current transaction

	Execute
	Executes a query, statement, procedure or provider specific text

	Open
	Opens a connection

	OpenSchema
	Returns schema information from the provider about the data source

	RollbackTrans
	Cancels any changes in the current transaction and ends the transaction

The BeginTrans, CommitTrans, and RollbackTrans Methods

These 3 methods is used with the Connection object to save or cancel changes made to the data source.

Note: Not all providers support transactions.

Note: These 3 methods are not available on a client-side Connection object.

BeginTrans

The BeginTrans method starts a new transaction.

This method can also be used to return a long value that is the level of nested transactions. A top level transaction has a return value of 1. Each additional level increments by one.

CommitTrans

The CommitTrans method saves all changes made since the last BeginTrans method call, and ends the current transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

RollbackTrans

The RollbackTrans method cancels all changes made since the last BeginTrans method call, and ends the transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

Syntax

	level=BeginTrans()

objconn.BeginTrans

objconn.CommitTrans

objconn.RollbackTrans

The Cancel Method

The Cancel method cancels an execution of a method call.

The Cancel method cancels different tasks for each object. The table below shows what task is cancelled when this method is called:

	Object
	Cancelled task

	Command
	Execute.

Note: The Options parameter of the Execute method must be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Connection
	Execute or Open.

Note: The Options parameter of the Open method must be set to adSyncConnect, or the Options parameter of the Execute method be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Record
	CopyRecord, DeleteRecord, MoveRecord, or Open

Note: The Options parameter of the Execute method must be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Recordset
	Open

	Stream
	Open

Syntax

	object.Cancel

The Close Method

The Close method is used to close a Connection object, a Record object, a Recordset object, or a Stream object to free system resources.

Note: When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

	object.Close

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

rs.Close

conn.Close

%>

The BeginTrans, CommitTrans, and RollbackTrans Methods

These 3 methods is used with the Connection object to save or cancel changes made to the data source.

Note: Not all providers support transactions.

Note: These 3 methods are not available on a client-side Connection object.

BeginTrans

The BeginTrans method starts a new transaction.

This method can also be used to return a long value that is the level of nested transactions. A top level transaction has a return value of 1. Each additional level increments by one.

CommitTrans

The CommitTrans method saves all changes made since the last BeginTrans method call, and ends the current transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

RollbackTrans

The RollbackTrans method cancels all changes made since the last BeginTrans method call, and ends the transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

Syntax

	level=BeginTrans()

objconn.BeginTrans

objconn.CommitTrans

objconn.RollbackTrans

The Execute Method

The Execute method executes a specified query, SQL statement, stored procedure, or provider-specific text.

The results are stored in a new Recordset object if it is a row-returning query. A closed Recordset object will be returned if it is not a row-returning query.

Note: The returned Recordset is always a read-only, forward-only Recordset!

Tip: To create a Recordset with more functionality, first create a Recordset object. Set the desired properties, and then use the Recordset object's Open method to execute the query.

Syntax for row-returning

	Set objrs=objconn.Execute(commandtext,ra,options)

Syntax for non-row-returning

	objconn.Execute commandtext,ra,options

	Parameter
	Description

	commandtext
	Required. The SQL statement, stored procedure, or provider-specific text to execute

	ra
	Optional. The number of records affected by the query

	options
	Optional. Sets how the provider should evaluate the commandtext parameter. Can be one or more CommandTypeEnum or ExecuteOptionEnum values. Default is adCmdUnspecified

Example

	<%

sql="SELECT companyname FROM Customers"

Set rs=conn.Execute(sql)

%>

CommandTypeEnum Values

	Constant
	Value
	Description

	adCmdUnspecified
	-1
	Does not specify the command type argument.

	adCmdText
	1
	Evaluates CommandText as a textual definition of a command or stored procedure call.

	adCmdTable
	2
	Evaluates CommandText as a table name whose columns are all returned by an internally generated SQL query.

	adCmdStoredProc
	4
	Evaluates CommandText as a stored procedure name.

	adCmdUnknown
	8
	Indicates that the type of command in the CommandText property is not known.

	adCmdFile
	256
	Evaluates CommandText as the file name of a persistently stored Recordset. Used with Recordset.Open or Requery only.

	adCmdTableDirect
	512
	Evaluates CommandText as a table name whose columns are all returned. Used with Recordset.Open or Requery only. To use the Seek method, the Recordset must be opened with adCmdTableDirect. This value cannot be combined with the ExecuteOptionEnum value adAsyncExecute.

ExecuteOptionEnum Values

	Constant
	Value
	Description

	adOptionUnspecified
	-1
	Indicates that the command is unspecified.

	adAsyncExecute
	16
	Indicates that the command should execute asynchronously. This value cannot be combined with the CommandTypeEnum value adCmdTableDirect.

	adAsyncFetch
	32
	Indicates that the remaining rows after the initial quantity specified in the CacheSize property should be retrieved asynchronously.

	adAsyncFetchNonBlocking
	64
	Indicates that the main thread never blocks while retrieving. If the requested row has not been retrieved, the current row automatically moves to the end of the file. If you open a Recordset from a Stream containing a persistently stored Recordset, adAsyncFetchNonBlocking will not have an effect; the operation will be synchronous and blocking. adAsynchFetchNonBlocking has no effect when the adCmdTableDirect option is used to open the Recordset.

	adExecuteNoRecords
	128
	Indicates that the command text is a command or stored procedure that does not return rows (for example, a command that only inserts data). If any rows are retrieved, they are discarded and not returned. adExecuteNoRecords can only be passed as an optional parameter to the Command or Connection Execute method.

	adExecuteStream
	256
	Indicates that the results of a command execution should be returned as a stream. adExecuteStream can only be passed as an optional parameter to the Command Execute method.

	adExecuteRecord
	512
	Indicates that the CommandText is a command or stored procedure that returns a single row which should be returned as a Record object.

The Open Method

The Open method opens a connection to a data source. When the connection is open, you can execute commands against the data source.

Syntax

	connection.Open connectionstring,userid,psword,options

	Parameter
	Description

	connectionstring
	Optional. A string value that contains information about the connection. The string is composed of a series of parameter=value statements separated by semicolons.

Provider= the name of the provider
File Name= the file that contains the connection information
Remote Provider= the name of the provider to open a client-side connection
Remote Server= the path name to the server to open a client-side connection
URL= the absolute URL address to use for the connection.

See the ConnectionString property for details.

	userid
	Optional. A String value that contains a user name for the connection

	psword
	Optional. A String value that contains a password for the connection

	options
	Optional. A ConnectOptionEnum value that determines whether this method should return after or before the connection is established.

Example

	A DSN-less connection:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

%>

An ODBC Database Connection:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Open "northwind"

%>

ConnectOptionEnum

	Constant
	Value
	Description

	adConnectUnspecified
	-1
	Default. Opens the connection synchronously (after).

	adAsyncConnect
	16
	Opens the connection asynchronously (before).

The OpenSchema Method

The OpenSchema method returns a Recordset object with schema information from the provider about the data source. For example, schema information can include the names of the tables, names of the columns in the tables, and the data type of each column. The Recordset will be opened as a read-only recordset.

Syntax

	Set rs=objconn.OpenSchema(querytype,criteria,schemaid)

	Parameter
	Description

	querytype
	Required. A SchemaEnum value that represents the type of schema query to run

Note: The OLEDB specification only require 3 of the SchemaEnum values to be supported. These are adSchemaTables, adSchemaColumns, and the adSchemaProviderTypes

	criteria
	Optional. An array of query constraints for each querytype option, as listed in SchemaEnum

	schemaid
	The GUID for a provider-schema query not defined by the OLE DB specification. Required if querytype is set to adSchemaProviderSpecific

SchemaEnum Values

	Constant
	Value
	Description
	Constraint Columns

	adSchemaProviderSpecific
	-1
	Used if the provider defines its own nonstandard schema queries
	Provider specific

	adSchemaAsserts
	0
	Returns the assertions defined in the catalog
	CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

	adSchemaCatalogs
	1
	Returns the physical attributes associated with catalogs accessible from the DBMS
	CATALOG_NAME

	adSchemaCharacterSets
	2
	Returns the character sets defined in the catalog
	CHARACTER_SET_CATALOG
CHARACTER_SET_SCHEMA
CHARACTER_SET_NAME

	adSchemaCollations
	3
	Returns the character collations defined in the catalog
	COLLATION_CATALOG
COLLATION_SCHEMA
COLLATION_NAME

	adSchemaColumns
	4
	Returns the columns of tables defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

	adSchemaCheckConstraints
	5
	Returns the check constraints defined in the catalog
	CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

	adSchemaConstraintColumnUsage
	6
	Returns the columns used by referential constraints, unique constraints, check constraints, and assertions, defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

	adSchemaConstraintTableUsage
	7
	Returns the tables that are used by referential constraints, unique constraints, check constraints, and assertions defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

	adSchemaKeyColumnUsage
	8
	Returns the columns defined in the catalog that are constrained as keys
	CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

	AdSchemaReferentialConstraints
	9
	Returns the referential constraints defined in the catalog
	CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

	adSchemaTableConstraints
	10
	Returns the table constraints defined in the catalog
	CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
CONSTRAINT_TYPE

	adSchemaColumnsDomainUsage
	11
	Returns the columns defined in the catalog that are dependent on a domain defined in the catalog
	DOMAIN_CATALOG
DOMAIN_SCHEMA
DOMAIN_NAME
COLUMN_NAME

	adSchemaIndexes
	12
	Returns the indexes defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TYPE
TABLE_NAME

	adSchemaColumnPrivileges
	13
	Returns the privileges on columns of tables defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
GRANTOR
GRANTEE

	adSchemaTablePrivileges
	14
	Returns the privileges on tables defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
GRANTOR
GRANTEE

	adSchemaUsagePrivileges
	15
	Returns the USAGE privileges on objects defined in the catalog
	OBJECT_CATALOG
OBJECT_SCHEMA
OBJECT_NAME
OBJECT_TYPE
GRANTOR
GRANTEE

	adSchemaProcedures
	16
	Returns the procedures defined in the catalog
	PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PROCEDURE_TYPE

	adSchemaSchemata
	17
	Returns the schemas (database objects)
	CATALOG_NAME
SCHEMA_NAME
SCHEMA_OWNER

	adSchemaSQLLanguages
	18
	Returns the conformance levels, options, and dialects supported by the SQL-implementation processing data defined in the catalog.
	None

	adSchemaStatistics
	19
	Returns the statistics defined in the catalog
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

	adSchemaTables
	20
	Returns the tables defined in the catalog that are accessible
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

	adSchemaTranslations
	21
	Returns the character translations defined in the catalog that are accessible
	TRANSLATION_CATALOG
TRANSLATION_SCHEMA
TRANSLATION_NAME

	adSchemaProviderTypes
	22
	Returns the data types supported by the data provider
	DATA_TYPE
BEST_MATCH

	adSchemaViews
	23
	Returns the views defined in the catalog that are accessible
	TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

	adSchemaViewColumnUsage
	24
	Returns the columns on which viewed tables, are dependent
	VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME

	adSchemaViewTableUsage
	25
	Returns the tables on which viewed tables, are dependent
	VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME

	adSchemaProcedureParameters
	26
	Returns info about the parameters and return codes of procedures
	PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_NAME

	adSchemaForeignKeys
	27
	Returns the foreign key columns defined in the catalog
	PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
FK_TABLE_CATALOG
FK_TABLE_SCHEMA
FK_TABLE_NAME

	adSchemaPrimaryKeys
	28
	Returns the primary key columns defined in the catalog
	PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME

	adSchemaProcedureColumns
	29
	Returns info about the columns of rowsets returned by procedures
	PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
COLUMN_NAME

	adSchemaDBInfoKeywords
	30
	Returns a list of provider-specific keywords
	None

	adSchemaDBInfoLiterals
	31
	Returns a list of provider-specific literals used in text commands
	None

	adSchemaCubes
	32
	Returns info about the available cubes in a schema
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME

	adSchemaDimensions
	33
	Returns info about the dimensions in a given cube
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_NAME
DIMENSION_UNIQUE_NAME

	adSchemaHierarchies
	34
	Returns info about the hierarchies available in a dimension
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_NAME
HIERARCHY_UNIQUE_NAME

	adSchemaLevels
	35
	Returns info about the levels available in a dimension
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_NAME
LEVEL_UNIQUE_NAME

	adSchemaMeasures
	36
	Returns info about the available measures
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
MEASURE_NAME
MEASURE_UNIQUE_NAME

	adSchemaProperties
	37
	Returns info about the available properties for each level of the dimension
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_UNIQUE_NAME
MEMBER_UNIQUE_NAME
PROPERTY_TYPE
PROPERTY_NAME

	adSchemaMembers
	38
	Returns info about the available members
	CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_UNIQUE_NAME
LEVEL_NUMBER
MEMBER_NAME
MEMBER_UNIQUE_NAME
MEMBER_CAPTION
MEMBER_TYPE
TREE OPERATOR

	adSchemaTrustees
	39
	For future use
	None

The BeginTrans, CommitTrans, and RollbackTrans Methods

These 3 methods is used with the Connection object to save or cancel changes made to the data source.

Note: Not all providers support transactions.

Note: These 3 methods are not available on a client-side Connection object.

BeginTrans

The BeginTrans method starts a new transaction.

This method can also be used to return a long value that is the level of nested transactions. A top level transaction has a return value of 1. Each additional level increments by one.

CommitTrans

The CommitTrans method saves all changes made since the last BeginTrans method call, and ends the current transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

RollbackTrans

The RollbackTrans method cancels all changes made since the last BeginTrans method call, and ends the transaction.

Since transactions can be nested, all lower-level transactions must be resolved before you can resolve higher-level transactions.

Syntax

	level=BeginTrans()

objconn.BeginTrans

objconn.CommitTrans

objconn.RollbackTrans

Events

Note: You cannot handle events using VBScript or JScript (only Visual Basic, Visual C++, and Visual J++ languages can handle events).

	Event
	Description

	BeginTransComplete
	Triggered after the BeginTrans operation

	CommitTransComplete
	Triggered after the CommitTrans operation

	ConnectComplete
	Triggered after a connection starts

	Disconnect
	Triggered after a connection ends

	ExecuteComplete
	Triggered after a command has finished executing

	InfoMessage
	Triggered if a warning occurs during a ConnectionEvent operation

	RollbackTransComplete
	Triggered after the RollbackTrans operation

	WillConnect
	Triggered before a connection starts

	WillExecute
	Triggered before a command is executed

The BeginTransComplete, CommitTransComplete, and RollbackTransComplete Events

An event is a subroutine that can be called automatically after a specific operation has occurred.

· The BeginTransComplete event can be fired after a BeginTrans call is completed.

· The CommitTransComplete event can be fired after a CommitTrans call is completed.

· The RollbackTransComplete event can be fired after a RollbackTrans call is completed

Syntax

	BeginTransComplete translevel,objerror,status,objconn

CommitTransComplete objerror,status,objconn

RollbackTransComplete objerror,status,objconn

	Parameter
	Description

	translevel
	The transaction level of the BeginTrans method that fired the event

	objerror
	An Error object that contains the errors that occurred

Note: The EventStatusEnum value must be set to adStatusErrorsOccurred to create the Error object

	status
	Specifies the status of the execution of an event. Takes an EventStatusEnum value

	objconn
	The Connection object that fired the event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that fired the event was successful

	adStatusErrorsOccurred
	2
	The operation that fired the event failed

	adStatusCantDeny
	3
	Cannot cancel the pending operation

	adStatusCancel
	4
	Cancels the operation that fired the event

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillConnect, ConnectComplete, and Disconnect Events

An event is a subroutine that can be called automatically after a specific operation has occurred.

· The WillConnect event can be fired before a connection starts.

· The ConnectComplete event can be fired after a connection starts.

· The Disconnect event can be fired after a connection ends.

Syntax

	WillConnect ConnectionString,userid,psword,options,status,objcon

ConnectComplete objerror,status,objconn

Disconnect status,objconn

	Parameter
	Description

	ConnectionString
	A string that contains the information required for the connection

	userid
	A string that contains the user name for the connection

	psword
	A string that contains the password for the connection

	options
	A long value that specifies how the provider should evaluate the ConnectionString. Can only be set to adAsyncOpen

	objerror
	An Error object that contains the errors that occurred

Note: The EventStatusEnum value must be set to adStatusErrorsOccurred to create the Error object

	status
	An EventStatusEnum value. Default is adStatusOK

However, when the ConnectComplete event is called, this parameter is set to adStatusCancel IF a WillConnect event calls for cancelling of the pending connection

	objconn
	The Connection object that fired the event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that fired the event was successful

	adStatusErrorsOccurred
	2
	The operation that fired the event failed

	adStatusCantDeny
	3
	Cannot cancel the pending operation

	adStatusCancel
	4
	Cancels the operation that fired the event

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillExecute and ExecuteComplete Events

An event is a subroutine that can be called automatically after a specific operation has occurred.

· The WillExecute event can be fired just before a call to objcomm.Execute, objconn.Execute, or objrs.Open.

· The ExecuteComplete event can be fired after a call to objcomm.Execute, objconn.Execute, objrs.Open, objrs.Requery, or objrs.NextRecordset is completed.

Syntax

	WillExecute src,cursortyp,locktyp,options,

status,objcomm,objrs,objconn

ExecuteComplete recaffected,objerror,status,

objcomm,objrs,objconn

	Parameter
	Description

	src
	A string that contains an SQL command or a stored procedure name

	cursortyp
	Specifies the type of cursor to be used. One of the CursorTypeEnum values

	locktyp
	Specifies the type of lock to be used. One of the LockTypeEnum values

	options
	One or more of the CommandTypeEnum or ExecuteOptionEnum values

	recaffected
	The number of records affected by the execution

	objerror
	An Error object that contains the errors that occurred

Note: The EventStatusEnum value must be set to adStatusErrorsOccurred to create the Error object

	status
	An EventStatusEnum value

	objcomm
	For WillExecute: Set to the Command object that was executed or to Nothing

For ExecuteComplete: The Command object that was executed

	objrs
	For WillExecute: Set to the Recordset object that resulted from the execution of the command or to Nothing

For ExecuteComplete: The Recordset object that is the result of the executed command

	objconn
	The Connection object that is associated with the execution of the command

CursorTypeEnum Values

Specifies the type of cursor used in a Recordset object.

	Constant
	Value
	Description

	adOpenUnspecified
	-1
	Does not specify the type of cursor.

	adOpenForwardOnly
	0
	Default. Uses a forward-only cursor. Identical to a static cursor, except that you can only scroll forward through records. This improves performance when you need to make only one pass through a Recordset.

	adOpenKeyset
	1
	Uses a keyset cursor. Like a dynamic cursor, except that you can't see records that other users add, although records that other users delete are inaccessible from your Recordset. Data changes by other users are still visible.

	adOpenDynamic
	2
	Uses a dynamic cursor. Additions, changes, and deletions by other users are visible, and all types of movement through the Recordset are allowed, except for bookmarks, if the provider doesn't support them.

	adOpenStatic
	3
	Uses a static cursor. A static copy of a set of records that you can use to find data or generate reports. Additions, changes, or deletions by other users are not visible.

LockTypeEnum Values

	Constant
	Value
	Description

	adLockUnspecified
	-1
	Does not specify a type of lock. For clones, the clone is created with the same lock type as the original.

	adLockReadOnly
	1
	Indicates read-only records. You cannot alter the data.

	adLockPessimistic
	2
	Indicates pessimistic locking, record by record. The provider does what is necessary to ensure successful editing of the records, usually by locking records at the data source immediately after editing.

	adLockOptimistic
	3
	Indicates optimistic locking, record by record. The provider uses optimistic locking, locking records only when you call the Update method.

	adLockBatchOptimistic
	4
	Indicates optimistic batch updates. Required for batch update mode.

CommandTypeEnum Values

	Constant
	Value
	Description

	adCmdUnspecified
	-1
	Does not specify the command type argument.

	adCmdText
	1
	Evaluates CommandText as a textual definition of a command or stored procedure call.

	adCmdTable
	2
	Evaluates CommandText as a table name whose columns are all returned by an internally generated SQL query.

	adCmdStoredProc
	4
	Evaluates CommandText as a stored procedure name.

	adCmdUnknown
	8
	Indicates that the type of command in the CommandText property is not known.

	adCmdFile
	256
	Evaluates CommandText as the file name of a persistently stored Recordset. Used with Recordset.Open or Requery only.

	adCmdTableDirect
	512
	Evaluates CommandText as a table name whose columns are all returned. Used with Recordset.Open or Requery only. To use the Seek method, the Recordset must be opened with adCmdTableDirect. This value cannot be combined with the ExecuteOptionEnum value adAsyncExecute.

ExecuteOptionEnum Values

	Constant
	Value
	Description

	adOptionUnspecified
	-1
	Indicates that the command is unspecified.

	adAsyncExecute
	16
	Indicates that the command should execute asynchronously. This value cannot be combined with the CommandTypeEnum value adCmdTableDirect.

	adAsyncFetch
	32
	Indicates that the remaining rows after the initial quantity specified in the CacheSize property should be retrieved asynchronously.

	adAsyncFetchNonBlocking
	64
	Indicates that the main thread never blocks while retrieving. If the requested row has not been retrieved, the current row automatically moves to the end of the file. If you open a Recordset from a Stream containing a persistently stored Recordset, adAsyncFetchNonBlocking will not have an effect; the operation will be synchronous and blocking. adAsynchFetchNonBlocking has no effect when the adCmdTableDirect option is used to open the Recordset.

	adExecuteNoRecords
	128
	Indicates that the command text is a command or stored procedure that does not return rows (for example, a command that only inserts data). If any rows are retrieved, they are discarded and not returned. adExecuteNoRecords can only be passed as an optional parameter to the Command or Connection Execute method.

	adExecuteStream
	256
	Indicates that the results of a command execution should be returned as a stream. adExecuteStream can only be passed as an optional parameter to the Command Execute method.

	adExecuteRecord
	512
	Indicates that the CommandText is a command or stored procedure that returns a single row which should be returned as a Record object.

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that fired the event was successful

	adStatusErrorsOccurred
	2
	The operation that fired the event failed

	adStatusCantDeny
	3
	Cannot cancel the pending operation

	adStatusCancel
	4
	Cancels the operation that fired the event

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The InfoMessage Event

An event is a subroutine that can be called automatically after a specific operation has occurred.

The InfoMessage event can be fired if a warning occurs in a connection operation.

Syntax

	InfoMessage objerror,status,objconn

	Parameter
	Description

	objerror
	An Error object that contains the errors that are returned

	status
	An EventStatusEnum value. If a warning occurs, status is set to adStatusOK and the objerror contains the warning

	objconn
	A Connection object. The connection for which the warning occurred

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that fired the event was successful

	adStatusErrorsOccurred
	2
	The operation that fired the event failed

	adStatusCantDeny
	3
	Cannot cancel the pending operation

	adStatusCancel
	4
	Cancels the operation that fired the event

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

ADO Recordset

To be able to read database data, the data must first be loaded into a recordset.

Create an ADO Table Recordset

After an ADO Database Connection has been created, as demonstrated in the previous chapter, it is possible to create an ADO Recordset.

Suppose we have a database named "Northwind", we can get access to the "Customers" table inside the database with the following lines:

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

%>

Create an ADO SQL Recordset

We can also get access to the data in the "Customers" table using SQL:

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>

Extract Data from the Recordset

After a recordset is opened, we can extract data from recordset.

Suppose we have a database named "Northwind", we can get access to the "Customers" table inside the database with the following lines:

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

for each x in rs.fields

 response.write(x.name)

 response.write(" = ")

 response.write(x.value)

next

%>

The ADO Recordset Object

The ADO Recordset object is used to hold a set of records from a database table.

View all methods and properties of the Recordset object.

ADO Recordset Object

Examples

GetRows
This example demonstrates how to use the GetRows method.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy
'The second number indicates what recordnumber to start on
p=rs.GetRows(2,0)

response.write("<p>This example returns the value of the first column in the first two records:</p>")
response.write(p(0,0))
response.write("
")
response.write(p(0,1))

response.write("<p>This example returns the value of the first three columns in the first record:</p>")
response.write(p(0,0))
response.write("
")
response.write(p(1,0))
response.write("
")
response.write(p(2,0))

rs.close
conn.close
%>

</body>
</html>

Recordset Object

The ADO Recordset object is used to hold a set of records from a database table. A Recordset object consist of records and columns (fields).

In ADO, this object is the most important and the most used object to manipulate data from a database.

ProgID

	set objRecordset=Server.CreateObject("ADODB.recordset")

When you first open a Recordset, the current record pointer will point to the first record and the BOF and EOF properties are False. If there are no records, the BOF and EOF property are True.

Recordset objects can support two types of updating:

· Immediate updating - all changes are written immediately to the database once you call the Update method.

· Batch updating - the provider cache multiple changes and then send them to the database with the UpdateBatch method.

In ADO there are 4 different cursor types defined:

· Dynamic cursor - Allows you to see additions, changes, and deletions by other users.

· Keyset cursor - Like a dynamic cursor, except that you cannot see additions by other users, and it prevents access to records that other users have deleted. Data changes by other users will still be visible.

· Static cursor - Provides a static copy of a recordset for you to use to find data or generate reports. Additions, changes, or deletions by other users will not be visible. This is the only type of cursor allowed when you open a client-side Recordset object.

· Forward-only cursor - Allows you to only scroll forward through the Recordset. Additions, changes, or deletions by other users will not be visible.

The cursor type can be set by the CursorType property or by the CursorType parameter in the Open method.

Note: Not all providers support all methods or properties of the Recordset object.

Properties

	Property
	Description

	AbsolutePage
	Sets or returns a value that specifies the page number in the Recordset object

	AbsolutePosition
	Sets or returns a value that specifies the ordinal position of the current record in the Recordset object

	ActiveCommand
	Returns the Command object associated with the Recordset

	ActiveConnection
	Sets or returns a definition for a connection if the connection is closed, or the current Connection object if the connection is open

	BOF
	Returns true if the current record position is before the first record, otherwise false

	Bookmark
	Sets or returns a bookmark. The bookmark saves the position of the current record

	CacheSize
	Sets or returns the number of records that can be cached

	CursorLocation
	Sets or returns the location of the cursor service

	CursorType
	Sets or returns the cursor type of a Recordset object

	DataMember
	Sets or returns the name of the data member that will be retrieved from the object referenced by the DataSource property

	DataSource
	Specifies an object containing data to be represented as a Recordset object

	EditMode
	Returns the editing status of the current record

	EOF
	Returns true if the current record position is after the last record, otherwise false

	Filter
	Sets or returns a filter for the data in a Recordset object

	Index
	Sets or returns the name of the current index for a Recordset object

	LockType
	Sets or returns a value that specifies the type of locking when editing a record in a Recordset

	MarshalOptions
	Sets or returns a value that specifies which records are to be returned back to the server

	MaxRecords
	Sets or returns the maximum number of records to return to a Recordset object from a query

	PageCount
	Returns the number of pages with data in a Recordset object

	PageSize
	Sets or returns the maximum number of records allowed on a single page of a Recordset object

	RecordCount
	Returns the number of records in a Recordset object

	Sort
	Sets or returns the field names in the Recordset to sort on

	Source
	Sets a string value or a Command object reference, or returns a String value that indicates the data source of the Recordset object

	State
	Returns a value that describes if the Recordset object is open, closed, connecting, executing or retrieving data

	Status
	Returns the status of the current record with regard to batch updates or other bulk operations

	StayInSync
	Sets or returns whether the reference to the child records will change when the parent record position changes

The AbsolutePage and AbsolutePosition Property

AbsolutePage

The AbsolutePage property sets or returns a long value that specifies the page number in the Recordset object. It sets or returns a value from 1 to the number of pages in the Recordset, or it returns a PositionEnum value. The value is 1 when the current record is the first record in the Recordset.

Tip: To get the total number of pages in the Recordset, use the PageCount property.

Tip: To divide the Recordset into a series of pages, use the PageSize property.

Note: This property can only be used if the AbsolutePage, PageCount, and PageSize properties are supported by the provider.

AbsolutePosition

The AbsolutePosition property sets or returns a long value that specifies the ordinal (numeric) position of the current record in the Recordset object. It sets or returns a value from 1 to the number of records in the Recordset, or it returns a PositionEnum value. The value is 1 when the current record is the first record in the Recordset.

When you set this property to a number, you will be moved to the record at the numeric position.

Tip: To get the total number of records in the Recordset, use the RecordCount property.

Note: Do not use this property to uniquely identify a record!

Syntax

	objRecordset.AbsolutePage

objRecordset.AbsolutePosition

PositionEnum Values

	Constant
	Value
	Description

	adPosUnknown
	-1
	Indicates that the Recordset is empty, the current position is unknown, or the provider does not support the AbsolutePage or AbsolutePosition property

	adPosBOF
	-2
	Indicates that the current record pointer is before the first record (BOF)

	adPosEOF
	-3
	Indicates that the current record pointer is after the last record (EOF)

The ActiveCommand and ActiveConnection Properties

ActiveCommand

The ActiveCommand property returns a variant that contains the Command object associated with the Recordset object.

Note: If the Recordset object was not created by a Command object, Null is returned.

ActiveConnection

The ActiveConnection property sets or returns a string or variant that contains the Connection object associated with the Recordset object. If the connection is closed, this property sets or returns a definition for a connection.

Syntax

	objRecordset.ActiveCommand

objRecordset.ActiveConnection

The BOF and EOF Properties

The BOF property returns True (-1) if the current record position is before the first record in the Recordset, otherwise it returns False (0).

The EOF property returns True (-1) if the current record position is after the last record in the Recordset, otherwise it returns False (0).

Note: The BOF and EOF properties are set to True if you open an empty Recordset. RecordCount property is zero.

Note: If a Recordset holds at least one record, the first record is the current and the BOF and EOF properties are False.

Syntax

	objRecordset.BOF

or

objRecordset.EOF

Example

	%>

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

%>

<table border="1" width="100%">

<%while rs.EOF=false%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

<%wend

rs.close

conn.close

%>

The Bookmark Property

The Bookmark property specifies a bookmark. The bookmark saves the position of the current record.

To save the bookmark for the current record, assign the value of the Bookmark property to a variable. To return to the "bookmarked" record, set the Bookmark property to the value of that variable.

Note: The Bookmark property is available only in Recordset objects that support bookmarks.

Syntax

	objRecordset.Bookmark

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

rs.MoveFirst

'Store bookmark of the current record

bkmark=rs.Bookmark

rs.MoveLast

'Go to the bookmarked record

rs.Bookmark=bkmark

rs.Close

conn.Close

%>

The CacheSize Property

The CacheSize property sets or returns a long value that specifies the number of records that can be cached locally in memory. The value must be greater than 0.

Note: You can change this property any time, as long as the Recordset exists, but remember that the cached content will not change until the next retrieval from the database.

The default value for this property is 1. This means that only one record is fetched and cached at a time. For large databases, this is not efficient. A larger value will speed up operations, but remember that cached records may not show recent changes made to the database. To avoid this you can call the Resync method regularly, which will update the cache.

Syntax

	objRecordset.CacheSize

The CursorLocation Property

The CursorLocation property sets or returns a long value that indicates the location of the cursor service. It can be set to one of the CursorLocationEnum values. Default value is AdUseServer.

A cursor is used to:

· control record navigation

· control the visibility of changes in the database

· control the updatability of data

Note: A Recordset object inherits this setting from the associated Connection object.

Note: This property is read-only on an open Recordset object, and read/write on a Connection object or on a closed Recordset object.

Syntax

	objConnection.CursorLocation
objRecordset.CursorLocation

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation=adUseClient

rs.CursorType=adOpenStatic

rs.LockType=adLockBatchOptimistic

rs.Open sql,conn

rs.Close

conn.Close

%>

CursorLocationEnum Values

	Constant
	Value
	Description

	adUseNone
	1
	OBSOLETE (appears only for backward compatibility). Does not use cursor services

	adUseServer
	2
	Default. Uses a server-side cursor

	adUseClient
	3
	Uses a client-side cursor supplied by a local cursor library. For backward compatibility, the synonym adUseClientBatch is also supported

The CursorType Property

The CursorType property sets or returns the cursor type to use when opening a Recordset object. This property can take a CursorTypeEnum value. Default is adOpenForwardOnly.

Note: If the CursorLocation property is set to adUseClient, the only valid setting for the CursorType property is adOpenStatic.

Note: No error will occur if an unsupported value is set, the provider will just change to a supported CursorType instead.

Syntax

	objRecordset.CursorType

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation = adUseClient

rs.CursorType = adOpenStatic

rs.LockType = adLockBatchOptimistic

rs.Open sql, conn

%>

CursorTypeEnum Values

	Constant
	Value
	Description

	adOpenUnspecified
	-1
	Does not specify the type of cursor.

	adOpenForwardOnly
	0
	Default. Uses a forward-only cursor. Identical to a static cursor, except that you can only scroll forward through records. This improves performance when you need to make only one pass through a Recordset.

	adOpenKeyset
	1
	Uses a keyset cursor. Like a dynamic cursor, except that you can't see records that other users add, although records that other users delete are inaccessible from your Recordset. Data changes by other users are still visible.

	adOpenDynamic
	2
	Uses a dynamic cursor. Additions, changes, and deletions by other users are visible, and all types of movement through the Recordset are allowed, except for bookmarks, if the provider doesn't support them.

	adOpenStatic
	3
	Uses a static cursor. A static copy of a set of records that you can use to find data or generate reports. Additions, changes, or deletions by other users are not visible.

The DataMember Property

The DataMember property sets or returns a string value that contains the name of the data member that will be retrieved from the object referenced by the DataSource property. The name is not case sensitive.

This property is used to create data-bound controls with the Data Environment in Visual Basic 6.

Note: The DataMember and DataSource properties must be used in conjunction.

Syntax

	objRecordset.DataMember

The DataSource Property

The DataSource property specifies an object containing data to be represented as a Recordset object

The DataSource property is used to create data-bound controls with the Data Environment in Visual Basic 6.

Note: The DataMember and DataSource properties must be used in conjunction.

Syntax

	objRecordset.DataSource

The EditMode Property

The EditMode property returns an EditModeEnum value that specifies the editing status of the current record.

Syntax

	objRecordset.EditMode

EditModeEnum Values

	Constant
	Value
	Description

	adEditNone
	0
	No editing operation is in progress

	adEditInProgress
	1
	The current record has been edited but not saved

	adEditAdd
	2
	The current record in the copy buffer is a new record and has not been saved in the database

	adEditDelete
	4
	The current record has been deleted

The Filter Property

The Filter property sets or returns a variant that contains a filter for the data in a Recordset object. The filter allows you to select records that fit a specific criteria.

The Filter property can contain one of the following:

· A criteria string

· An array of bookmarks

· A FilterGroupEnum value

Examples of a criteria string:

· rs.Filter="Lastname='Smith'"

· rs.Filter="Lastname='Smith' AND Birthdate >= #4/10/70#"

· rs.Filter="Lastname ='Jonson' OR Lastname='Johnson'"

· rs.Filter= "Lastname LIKE Jon*"

· rs.Filter="[Company Name]='Alfred Futterkiste' OR Orders>$300.00"

Example of an array of bookmarks:

dim fname(10)
fname(2)=rs.Bookmark
rs.Filter=fname(2)

When the Filter property is set, the cursor moves to the first record in the filtered Recordset. And, when the Filter property is cleared, the cursor moves to the first record in the unfiltered Recordset.

Syntax

	objRecordset.Filter

FilterGroupEnum Values

	Constant
	Value
	Description

	adFilterNone
	0
	Removes the current filter

	adFilterPendingRecords
	1
	Filter that displays only edited records that have not yet been sent to the server

	adFilterAffectedRecords
	2
	Filter that displays only records affected by the last Delete, Resync, UpdateBatch, or CancelBatch call

	adFilterFetchedRecords
	3
	Filter that displays the records in the current cache

	adFilterConflictingRecords
	5
	Filter that displays those records that failed the last batch update

The Index Property

The Index property sets or returns a string value that indicates the name of the current index for a Recordset object. The index must have been created as an index on the table or as an ADOX Index object. This property can be set on an open or closed Recordset.

Note: This property is used together with the Seek method to create an indexed display of records and to use the Seek method to search these indexed records, but few providers supports this property and method. Use the Supports method to determine whether the provider supports seek and indexes.

Syntax

	objRecordset.Index

The LockType Property

The LockType property sets or returns a LockTypeEnum value that specifies the type of locking when editing a record in a Recordset. Default is adLockReadOnly. This property is read/write on a closed Recordset and read-only on an open Recordset.

Note: Set this property before opening the Recordset.

Note: Not all providers support all lock types. If the requested LockType setting is not supported, the provider will choose another type of locking. You can use the Supports method to determine the actual locking functionality available in a Recordset object.

Note: adLockPessimistic is not supported if CursorLocation is set to adUseClient.

Syntax

	objRecordset.LockType

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation=adUseClient

rs.CursorType=adOpenStatic

rs.LockType=adLockBatchOptimistic

rs.Open sql,conn

rs.Close

conn.Close

%>

LockTypeEnum Values

	Constant
	Value
	Description

	adLockUnspecified
	-1
	Unspecified type of lock. Clones inherits lock type from the original Recordset.

	adLockReadOnly
	1
	Read-only records

	adLockPessimistic
	2
	Pessimistic locking, record by record. The provider lock records immediately after editing

	adLockOptimistic
	3
	Optimistic locking, record by record. The provider lock records only when calling update

	adLockBatchOptimistic
	4
	Optimistic batch updates. Required for batch update mode

The MarshalOptions Property

The MarshalOptions property sets or returns a MarshalOptionsEnum value that specifies which records are to be returned back to the server. Default is adMarshalAll.

Syntax

	objRecordset.MarshalOptions

Example

	<%

if rs.MarshalOptions=adMarshalAll then

 rs.Update

 response.write("All records returned to server")

end if

%>

MarshalOptionsEnum Values

	Constant
	Value
	Description

	adMarshalAll
	0
	Default. Returns all rows

	adMarshalModifiedOnly
	1
	Returns only modified rows

The MaxRecords Property

The MaxRecords property sets or returns a long value that indicates the maximum number of records to return to a Recordset object from a query. Default is zero (which means that the provider returns all requested records).

This property is read/write on a closed Recordset and read-only on an open Recordset.

Syntax

	objRecordset.MaxRecords

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

rs.MaxRecords=20

sql="SELECT * FROM Customers"

rs.Open sql,conn

rs.Close

conn.Close

%>

The PageCount Property

The PageCount property returns a long value that indicates the number of pages with data in a Recordset object.

Tip: To divide the Recordset into a series of pages, use the PageSize property.

Note: If the last page contains fewer records than specified in PageSize, it still counts as an additional page in the PageCount property.

Note: If this method is not supported it returns -1.

Syntax

	objRecordset.PageCount

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.Open sql,conn

rs.PageSize=5

i=rs.PageCount

response.write("The number of pages in RS=" & i)

rs.Close

conn.Close

%>

The PageSize Property

The PageSize property sets or returns a long value that indicates the maximum number of records allowed on a single page of a Recordset object. Default is 10.

Tip: To get the number of pages in a Recordset object, use the PageCount property.

Syntax

	objRecordset.PageSize

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.Open sql,conn

rs.PageSize=5

i=rs.PageCount

response.write("The number of pages in RS=" & i)

rs.Close

conn.Close

%>

The RecordCount Property

The RecordCount property returns a long value that indicates the number of records in a Recordset object.

If the Recordset object supports AbsolutePosition and AbsolutePage properties or bookmarks (if Supports(adApproxPosition) or Supports(adBookmark) returns true), this property will return the exact number of records in the Recordset.

Note: This property will return -1 for a forward-only cursor; the actual count for a static or keyset cursor; and -1 or the actual count for a dynamic cursor.

Note: The Recordset object must be open when calling this property. If this property is not supported it will return -1.

Syntax

	objRecordset.RecordCount

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.Open sql,conn

if rs.Supports(adApproxPosition)=true then

 i=rs.RecordCount

 response.write("The number of records is: " & i)

end if

rs.Close

conn.Close

%>

The Sort Property

The Sort property sets or returns a string value that specifies the field names in the Recordset to sort on. Each field name must be separated by a comma. To choose the sort order, you can specify ASC (ascending order), or DESC (descending order) after the field name. Default is ASC.

Note: This property can only be used if the CursorLocation property is set to adUseClient.

Tip: If you set this property to an empty string (rs.Sort="") it will reset the records to their original order.

Syntax

	objRecordset.Sort

Example

	<%

rs.Sort="CompanyName,ContactName"

%>

or

<%

rs.Sort="CompanyName DESC,ContactName"

%>

or

<%

rs.Sort="CompanyName,ContactName,[Ship Address]"

%>

The Source Property

The Source property sets a string value or a Command object reference, or returns a String value that indicates the data source of the Recordset object.

The data source can be one of the following:

· A Command object

· An SQL statement

· A stored procedure

· A table name

This property is read/write on a closed Recordset objects and read-only for an open Recordset object.

Syntax

	objRecordset.Source

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

This property can be used with the Command, Connection, Record, Recordset, and Stream object.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

	object.State

Example

	For a Command object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set comm=Server.CreateObject("ADODB.Command")

response.write(comm.State)

conn.close

%>

For a Connection object:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

response.write(conn.State)

conn.close

%>

ObjectStateEnum Values

Specifies whether an object is open or closed, connecting to a data source, executing a command, or retrieving data.

	Constant
	Value
	Description

	adStateClosed
	0
	The object is closed

	adStateOpen
	1
	The object is open

	adStateConnecting
	2
	The object is connecting

	adStateExecuting
	4
	The object is executing a command

	adStateFetching
	8
	The rows of the object are being retrieved

The Status Property

The Status property returns one or more RecordStatusEnum value that indicates the status of the current record with regard to batch updates or other bulk operations.

Syntax

	objRecordset.Status

RecordStatusEnum

	Constant
	Value
	Description

	adRecOK
	0
	Record successfully updated

	adRecNew
	0x1
	Record is new

	adRecModified
	0x2
	Record modified

	adRecDeleted
	0x4
	Record deleted

	adRecUnmodified
	0x8
	Record not modified

	adRecInvalid
	0x10
	Record not saved; invalid bookmark

	adRecMultipleChanges
	0x40
	Record not saved; would have affected multiple records

	adRecPendingChanges
	0x80
	Record not saved; refers to a pending insert

	adRecCanceled
	0x100
	Record not saved; operation was canceled

	adRecCantRelease
	0x400
	New record not saved; existing record was locked

	adRecConcurrencyViolation
	0x800
	Record not saved; optimistic concurrency was in use

	adRecIntegrityViolation
	0x1000
	Record not saved; user violated integrity constraints

	adRecMaxChangesExceeded
	0x2000
	Record not saved; too many pending changes

	adRecObjectOpen
	0x4000
	Record not saved; conflict with an open storage object

	adRecOutOfMemory
	0x8000
	Record not saved; computer has run out of memory

	adRecPermissionDenied
	0x10000
	Record not saved; user has insufficient permissions

	adRecSchemaViolation
	0x20000
	Record not saved; violates the structure of the database

	adRecDBDeleted
	0x40000
	Record already deleted from the data source

The StayInSync Property

The StayInSync property sets or returns a boolean value that indicates whether the reference to the child records will change when the parent record position changes. Default value is true, which means that the child records will be updated if the parent Recordset object changes record position.

Note: This property is used with hierarchical recordsets.

Note: This property must be set on the parent Recordset before the child Recordset is retrieved.

Syntax

	objRecordset.StayInSync

Methods

	Method
	Description

	AddNew
	Creates a new record

	Cancel
	Cancels an execution

	CancelBatch
	Cancels a batch update

	CancelUpdate
	Cancels changes made to a record of a Recordset object

	Clone
	Creates a duplicate of an existing Recordset

	Close
	Closes a Recordset

	CompareBookmarks
	Compares two bookmarks

	Delete
	Deletes a record or a group of records

	Find
	Searches for a record in a Recordset that satisfies a specified criteria

	GetRows
	Copies multiple records from a Recordset object into a two-dimensional array

	GetString
	Returns a Recordset as a string

	Move
	Moves the record pointer in a Recordset object

	MoveFirst
	Moves the record pointer to the first record

	MoveLast
	Moves the record pointer to the last record

	MoveNext
	Moves the record pointer to the next record

	MovePrevious
	Moves the record pointer to the previous record

	NextRecordset
	Clears the current Recordset object and returns the next Recordset object by looping through a series of commands

	Open
	Opens a database element that gives you access to records in a table, the results of a query, or to a saved Recordset

	Requery
	Updates the data in a Recordset by re-executing the query that made the original Recordset

	Resync
	Refreshes the data in the current Recordset from the original database

	Save
	Saves a Recordset object to a file or a Stream object

	Seek
	Searches the index of a Recordset to find a record that matches the specified values

	Supports
	Returns a boolean value that defines whether or not a Recordset object supports a specific type of functionality

	Update
	Saves all changes made to a single record in a Recordset object

	UpdateBatch
	Saves all changes in a Recordset to the database. Used when working in batch update mode

The AddNew Method

The AddNew method creates a new record for an updateable Recordset object.

After you call this method, the new record will be the current record.

Syntax

	objRecordset.AddNew fieldlist,values

	Parameter
	Description

	fieldlist
	Optional. A field name, or an array of field names, or the numeric position of the fields in the new record

	values
	Optional. A value, or an array of values for the fields in the new record

Example

	<%

rs.AddNew "ProductName","Chang"

%>

or

<%

varfields=Array("ProductName","Prize","Quantity")

varvalues=Array("Chang","19","24-12 oz bottles")

rs.AddNew varfields,varvalues

%>

The Cancel Method

The Cancel method cancels an execution of a method call.

The Cancel method cancels different tasks for each object. The table below shows what task is cancelled when this method is called:

	Object
	Cancelled task

	Command
	Execute.

Note: The Options parameter of the Execute method must be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Connection
	Execute or Open.

Note: The Options parameter of the Open method must be set to adSyncConnect, or the Options parameter of the Execute method be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Record
	CopyRecord, DeleteRecord, MoveRecord, or Open

Note: The Options parameter of the Execute method must be set to adAsyncExecute or adAsyncFetch, before the Cancel method is called, otherwise a run-time error will occur

	Recordset
	Open

	Stream
	Open

Syntax

	object.Cancel

The CancelBatch Method

The CancelBatch method cancels a batch update. The Recordset must be in batch update mode when calling this method.

Since you do not know what the current record will be after calling this property, you will have to move to a known record. For example, you could call the MoveFirst or MoveLast method, after a call to this method.

If this method fails, the provider will not stop the execution, but it will send a warning to the Errors Collection.

Syntax

	objRecordset.CancelBatch affectrec

	Parameter
	Description

	affectrec
	Optional. An AffectEnum value that indicates which records this method will affect

AffectEnum Values

	Constant
	Value
	Description

	adAffectCurrent
	1
	Affects only the current record

	adAffectGroup
	2
	Affects only records that satisfy the Filter setting (Filter must be set to a FilterGroupEnum value or an array of Bookmarks)

	adAffectAll
	3
	Affects all records if there is no Filter. Affects only visible records in the current chapter if Filter is set to a string criteria. Affect all rows of the Recordset if Filter is set to a FilterGroupEnum value or an array of Bookmarks

	adAffectAllChapters
	4
	Affects all records in all child Recordset, including those hidden by a currently applied filter

The CancelUpdate Method

The CancelUpdate method cancels changes made to a record of a Recordset object, or the Fields collection of a Record object, before calling the Update method.

Recordset object

This method is used to cancel any changes made to the current record or to a newly added record. This method can only be called before the Update method of the Recordset is called.

Record object

This method is used to cancel any changes (insertions or deletions) of Field objects.

Syntax

	objRecordset.CancelUpdate

objRecord.Fields.CancelUpdate

The Clone Method

The Clone method allows you to create a duplicate Recordset from an existing Recordset. You can use this method to create multiple, duplicate Recordset, particularly if you want to edit more than one current record in a set of records. This method is much more efficient than creating, opening, and closing a new Recordset equal to the original.

When you clone a Recordset you actually just create a new pointer to the same Recordset, therefore any changes you make to one Recordset will be visible in all of its clones. However, if you execute a Requery on the original Recordset, the clones will no longer be synchronized to the original.

The provider must support bookmarks on the Recordset object to create clones. Bookmarks are interchangeable; a bookmark reference from one Recordset object refers to the same record in any of its clones.

Note: The filter of the original Recordset will not be applied to the clone. To copy an existing filter: objRecordsetNew.Filter=objRecordsetOriginal.Filter

Note: When you close the original Recordset none of the copies will be closed. You will have to close the clones one by one.

Syntax

	Set objRecordsetClone=objRecordset.Clone(locktype)

	Parameter
	Description

	objRecordsetClone
	The clone Recordset to be created

	objRecordset
	The Recordset to be cloned

	locktype
	Optional. A LockTypeEnum value that specifies the lock type

LockTypeEnum Values

	Constant
	Value
	Description

	adLockUnspecified
	-1
	The clone is created with the same lock type as the original Recordset

	adLockReadOnly
	1
	The clone is a read-only Recordset

The Close Method

The Close method is used to close a Connection object, a Record object, a Recordset object, or a Stream object to free system resources.

Note: When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

	object.Close

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

rs.Close

conn.Close

%>

The CompareBookmarks Method

The CompareBookmarks method compares two bookmarks. This method returns a CompareEnum value that indicates the bookmark's relative row positions.

Note: The two bookmarks must be within the same Recordset, or within a Recordset and its clone.

Note: You can use this method only if the provider support bookmarks.

Syntax

	result=objRecordset.CompareBookmarks(mark1,mark2)

	Parameter
	Description

	mark1
	The bookmark of the first row

	mark2
	The bookmark of the second row

CompareEnum Values

	Constant
	Value
	Description

	adCompareLessThan
	0
	The first bookmark is before the second

	adCompareEqual
	1
	The bookmarks are equal

	adCompareGreaterThan
	2
	The first bookmark is after the second

	adCompareNotEqual
	3
	The bookmarks are not equal

	adCompareNotComparable
	4
	The bookmarks cannot be compared

The Delete Method

The Delete method is used to delete the current record or a group of records. After deleting a record, the deleted record remains current until you move to a different record.

Note: If you are in batch update mode the deletion happens when you call the UpdateBatch method.

Note: To use this method assure that the Recordset object allows record deletion.

Note: If this method fails, the provider will not stop the execution, but it will send a warning to the Errors Collection.

Syntax

	objRecordset.Delete affectrecords

	Parameter
	Description

	affectrecords
	An AffectEnum value that specifies which records this method will delete. Default is adAffectCurrent

AffectEnum Values

	Constant
	Value
	Description

	adAffectCurrent
	1
	Deletes only the current record

	adAffectGroup
	2
	Deletes only records that satisfy the Filter setting (Filter must be set to a FilterGroupEnum value or an array of Bookmarks)

The Find Method

The Find method searches for a record in a Recordset that satisfies a specified criteria. If the search is successful, the record pointer will point to the first found record.

Note: A current row position (like MoveFirst) must be set before calling this method, otherwise an error will occur.

Syntax

	objRecordset.Find(criteria,skiprows,direction,start)

	Parameter
	Description

	criteria
	Required. The column name, comparison operator, and value to use in the search.

Examples:
"Country='Norway'"
"Date>#7/22/97#"
"Country LIKE N*"

Note: This method does not support multi-column searches (AND or OR)

	skiprows
	Optional. Specifies how many records beyond the current record to skip before beginning the search. Default is 0

	direction
	Optional. A SearchDirectionEnum value that specifies the search direction

	start
	Optional. The starting position for the search

SearchDirectionEnum Values

	Constant
	Value
	Description

	adSearchBackward
	-1
	Searches backward from the starting position. Stops at the beginning of the Recordset. If no match, the record pointer is placed at the beginning of the Recordset

	adSearchForward
	1
	Searches forward from the starting position. Stops at the end of the Recordset. If no match, the record pointer is placed at the end of the Recordset

The GetRows Method

The GetRows method copies multiple records from a Recordset object into a two-dimensional array.

Syntax

	vararray=objRecordset.GetRows(rows,start,fields)

	Parameter
	Description

	rows
	Optional. A GetRowsOptionEnum value that specifies the number of records to retrieve. Default is adGetRowsRest.

Note: If you omit this argument it will retrieve all records in the Recordset

	start
	Optional. What record to start on, a record number or a BookmarkEnum value

	fields
	Optional. If you want to specify only the fields that the GetRows call will return, it is possible to pass a single field name/number or an array of field names/numbers in this argument

Example

	<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy

'The second number indicates what recordnumber to start on

p=rs.GetRows(2,0)

'This example returns the value of the first

'column in the first two records

response.write(p(0,0))

response.write("
")

response.write(p(0,1))

'This example returns the value of the first

'three columns in the first record

response.write(p(0,0))

response.write("
")

response.write(p(1,0))

response.write("
")

response.write(p(2,0))

rs.close

conn.close

%>

GetRowsOptionEnum Values

	Constant
	Value
	Description

	adGetRowsRest
	-1
	Retrieves the rest of the records in the Recordset object

BookmarkEnum Values

	Constant
	Value
	Description

	adBookmarkCurrent
	0
	Starts at the current record

	adBookmarkFirst
	1
	Starts at the first record

	adBookmarkLast
	2
	Starts at the last record

The GetString Method

The GetString method returns the specified Recordset as a string. This method can be used to fill HTML tables in ASP files.

Syntax

	Set str_rs=objRecordset.GetString

(format,n,coldel,rowdel,nullexpr)

	Parameter
	Description

	format
	Optional. A StringFormatEnum value that specifies the format when retrieving a Recordset as a string

	n
	Optional. The number of rows to be converted in the Recordset

	coldel
	Optional. If format is set to adClipString it is a column delimiter. Otherwise it is the tab character

	rowdel
	Optional. If format is set to adClipString it is a row delimiter. Otherwise it is the carriage return character

	nullexpr
	Optional. If format is set to adClipString it is an expression used instead of a null value. Otherwise it is an empty string

StringFormatEnum Values

	Constant
	Value
	Description

	adClipString
	2
	Delimits rows by the rowdel parameter, columns by the coldel parameter, and null values by the nullexpr parameter

The Move Method

The Move method moves the record pointer in a Recordset object.

Note: This method can be used on all Recordset objects.

Syntax

	objRecordset.Move numrec,start

	Parameter
	Description

	numrec
	Required. Specifies how many records the record pointer will move.

Example: If this parameter is set to 3, the record pointer moves 3 records forward.

Example: If this parameter is set to -3, the record pointer moves 3 records backward

	start
	Optional. Where to start. Can be a bookmark or a BookmarkEnum value

BookmarkEnum

	Constant
	Value
	Description

	adBookmarkCurrent
	0
	Starts at the current record

	adBookmarkFirst
	1
	Starts at the first record

	adBookmarkLast
	2
	Starts at the last record

The MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

The MoveFirst Method

This method is used to move to the first record in a Recordset object. It also make the first record the current record.

Note: Calling MoveFirst or MoveLast when the Recordset is empty generates an error.

The MoveLast Method

This method is used to move to the last record in a Recordset object. It also make the last record the current record.

Note: Calling MoveFirst or MoveLast when the Recordset is empty generates an error.

Note: An error will occur if the Recordset object does not support bookmarks or backward cursor movement.

The MoveNext Method

This method is used to move to the next record in a Recordset object. It also make the "next" record the current record.

Note: If you call this method when the current record is the last record, it generates an error.

The MovePrevious Method

This method is used to move to the previous record in a Recordset object. It also make the "previous" record the current record.

Note: An error will occur if the Recordset object does not support bookmarks or backward cursor movement.

Note: If you call this method when the current record is the first record, it generates an error.

Syntax

	objRecordset.MoveFirst

objRecordset.MoveLast

objRecordset.MoveNext

objRecordset.MovePrevious

The NextRecordset Method

The NextRecordset method is used to clear the current Recordset object and return the next Recordset object by looping through a series of commands. This method returns a Recordset object.

Use this method to return the results of the next command in a compound command statement or the next result of a stored procedure that returns multiple results. For example, in a compound command statement, like "SELECT * FROM table1;SELECT * FROM table2", the Execute method on a Command or the Open method on a Recordset, will only execute the first command and return the result to a Recordset object. To access the result of the next command in the statement, call the NextRecordset method.

If a row-returning command executes successfully but returns no records, the returned Recordset object will be open but empty (BOF and EOF are both True). If a non–row-returning command executes successfully, the returned Recordset object will be closed (State property is adStateClosed). When there are no more results, the Recordset object will be set to Nothing.

Syntax

	Set objRecordset2=objRecordset1.NextRecordset(ra)

Note: objRecordset1 and objRecordset2 can be the same Recordset object.

	Parameter
	Description

	ra
	Optional. Returns the number of records affected by the operation

The Open Method

The Open method opens a database element that gives you access to records in a table, the results of a query, or to a saved Recordset.

Tip: Always close the Recordset object after using it, to free system resources. Set the Recordset object to Nothing to completely eliminate it from memory.

Syntax

	objRecordset.Open source,actconn,cursortyp,locktyp,opt

	Parameter
	Description

	source
	Optional. Specifies a data source. The source parameter may be one of the following:

· A URL

· A relative/full file path name

· A Command object

· An SQL statement

· A stored procedure

· A table name

	actconn
	Optional. A connection string or a Connection object

	cursortyp
	Optional. A CursorTypeEnum value that specifies the type of cursor to use when opening a Recordset object. Default is adOpenForwardOnly

	locktyp
	Optional. A LockTypeEnum value that specifies the type of locking on a Recordset object. Default is adLockReadOnly

	opt
	Optional. Specifies how to evaluate the source parameter if it is not a Command object. Can be one or more CommandTypeEnum or ExecuteOptionEnum values.

Example

	Open an ADO Table Recordset:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

%>

Open an ADO SQL Recordset:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>

CursorTypeEnum Values

	Constant
	Value
	Description

	adOpenUnspecified
	-1
	Unspecified type of cursor

	adOpenForwardOnly
	0
	Default. A forward-only cursor. This improves performance when you need to make only one pass through a Recordset

	adOpenKeyset
	1
	A keyset cursor. Like a dynamic cursor, except that you can't see records that other users add, although records that other users delete are inaccessible from your Recordset. Data changes by other users are still visible.

	adOpenDynamic
	2
	A dynamic cursor. Additions, changes, and deletions by other users are visible, and all types of movement through the Recordset are allowed

	adOpenStatic
	3
	A static cursor. A static copy of a set of records that you can use to find data or generate reports. Additions, changes, or deletions by other users are not visible.

LockTypeEnum Values

	Constant
	Value
	Description

	adLockUnspecified
	-1
	Unspecified type of lock. Clones inherits lock type from the original Recordset.

	adLockReadOnly
	1
	Read-only records

	adLockPessimistic
	2
	Pessimistic locking, record by record. The provider lock records immediately after editing

	adLockOptimistic
	3
	Optimistic locking, record by record. The provider lock records only when calling update

	adLockBatchOptimistic
	4
	Optimistic batch updates. Required for batch update mode

CommandTypeEnum Values

	Constant
	Value
	Description

	adCmdUnspecified
	-1
	Unspecified type of command

	adCmdText
	1
	Evaluates CommandText as a textual definition of a command or stored procedure call

	adCmdTable
	2
	Evaluates CommandText as a table name whose columns are returned by an SQL query

	adCmdStoredProc
	4
	Evaluates CommandText as a stored procedure name

	adCmdUnknown
	8
	Default. Unknown type of command

	adCmdFile
	256
	Evaluates CommandText as the file name of a persistently stored Recordset. Used with Recordset.Open or Requery only.

	adCmdTableDirect
	512
	Evaluates CommandText as a table name whose columns are all returned. Used with Recordset.Open or Requery only. To use the Seek method, the Recordset must be opened with adCmdTableDirect. Cannot be combined with the ExecuteOptionEnum value adAsyncExecute.

ExecuteOptionEnum Values

	Constant
	Value
	Description

	adOptionUnspecified
	-1
	Unspecified command

	adAsyncExecute
	16
	The command should execute asynchronously. Cannot be combined with the CommandTypeEnum value adCmdTableDirect

	adAsyncFetch
	32
	The remaining rows after the initial quantity specified in the CacheSize property should be retrieved asynchronously

	adAsyncFetchNonBlocking
	64
	The main thread never blocks while retrieving. If the requested row has not been retrieved, the current row automatically moves to the end of the file. If you open a Recordset from a Stream containing a persistently stored Recordset, adAsyncFetchNonBlocking will not have an effect; the operation will be synchronous and blocking. adAsynchFetchNonBlocking has no effect when the adCmdTableDirect option is used to open the Recordset

	adExecuteNoRecords
	128
	The command text is a command or stored procedure that does not return rows. If any rows are retrieved, they are discarded and not returned. adExecuteNoRecords can only be passed as an optional parameter to the Command or Connection Execute method

	adExecuteStream
	256
	The results of a command execution should be returned as a stream. adExecuteStream can only be passed as an optional parameter to the Command Execute method

	adExecuteRecord
	512
	The CommandText is a command or stored procedure that returns a single row which should be returned as a Record object

The Requery Method

The Requery method updates the data in a Recordset by re-executing the query that made the original Recordset.

Tip: Use this method to refresh the entire contents of a Recordset.

Note: With this method you call the Close and Open methods in one.

Syntax

	objRecordset.Requery options

	Parameter
	Description

	options
	Optional. Specifies how to execute this command. Can be an ExecuteOptionEnum value

ExecuteOptionEnum Values

	Constant
	Value
	Description

	adOptionUnspecified
	-1
	Unspecified command

	adAsyncExecute
	16
	The command should execute asynchronously. Cannot be combined with the CommandTypeEnum value adCmdTableDirect

	adAsyncFetch
	32
	The remaining rows after the initial quantity specified in the CacheSize property should be retrieved asynchronously

	adAsyncFetchNonBlocking
	64
	The main thread never blocks while retrieving. If the requested row has not been retrieved, the current row automatically moves to the end of the file. If you open a Recordset from a Stream containing a persistently stored Recordset, adAsyncFetchNonBlocking will not have an effect; the operation will be synchronous and blocking. adAsynchFetchNonBlocking has no effect when the adCmdTableDirect option is used to open the Recordset

	adExecuteRecord
	512
	The CommandText is a command or stored procedure that returns a single row which should be returned as a Record object

The Resync Method

The Resync method refreshes the data in a Recordset.

Tip: Use this method to resynchronize the Recordset with the database. If you want to see changes in the database and you are using a static or forward-only Recordset, this method is useful.

Note: This method does not re-execute the Recordset, so new records in the database will NOT be visible.

Syntax

	objRecordset.Resync affectrecords,resyncvalues

	Parameter
	Description

	affectrecords
	Optional. An AffectEnum value that specifies which records this method will affect. Default is adAffectAll

	resyncvalues
	Optional. A ResyncEnum value that specifies if underlying values are overwritten. Default is adResyncAllValues

AffectEnum Values

	Constant
	Value
	Description

	adAffectCurrent
	1
	Affects only the current record

	adAffectGroup
	2
	Affects only records that satisfy the Filter setting (Filter must be set to a FilterGroupEnum value or an array of Bookmarks)

	adAffectAll
	3
	Affects all records if there is no Filter. Affects only visible records in the current chapter if Filter is set to a string criteria. Affect all rows of the Recordset if Filter is set to a FilterGroupEnum value or an array of Bookmarks

	adAffectAllChapters
	4
	Affects all records in all child Recordset, including those hidden by a currently applied filter

ResyncEnum Values

	Constant
	Value
	Description

	adResyncAllValues
	2
	Default. Overwrites data, and pending updates are canceled

	adResyncUnderlyingValues
	1
	Does not overwrite data, and pending updates are not canceled

The Save Method

The Save method saves a Recordset object to a file or a Stream object. When the save method is finished, the record pointer will point at the first record of the Recordset.

Note: If there is a filter applied to the Recordset, only the "filtered" records will be saved.

Note: This method can only be called on an open Recordset.

Syntax

	objRecordset.Save destination,persistformat

	Parameter
	Description

	destination
	Optional. Specifies where to save the Recordset object; the path name of a file or a reference to a Stream object

	persistformat
	Optional. A PersistFormatEnum value that specifies the format of the Recordset (XML or ADTG). Default is adPersistADTG

Example

	You can save a Recordset in XML format:

<%

set xmlDoc=CreateObject("Microsoft.XMLDOM")

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

'Save the Recordset into a DOM tree

rs.Save xmldoc, 1

%>

PersistFormatEnum Values

	Constant
	Value
	Description

	adPersistADTG
	0
	Saves in a Microsoft Advanced Data TableGram (ADTG) format.

	adPersistXML
	1
	Saves in Extensible Markup Language (XML) format

	adPersistADO
	1
	Saves in ADO's own Extensible Markup Language (XML) format. This value is the same as adPersistXML and is included for backwards compatibility

	adPersistProviderSpecific
	2
	The provider will persist the Recordset using its own format

The Seek Method

The Seek method searches the index of a Recordset to find a record that matches the values specified in the keyvalues parameter. If there is a match, the pointer will point to the record specified by the seekoption parameter. If there is no match, the record pointer will be placed at the end of the Recordset.

Note: To use this method, the provider must support this method and the use of indexes on a Recordset (the Index property). Use the Supports method to determine whether the provider supports seek and indexes.

Note: Set the Index property to the desired index before executing this method.

Note: This method can only be used with server-side cursors (not supported when the CursorLocation property value is adUseClient).

Note: This method can only be used when the Recordset object was opened with the CommandTypeEnum value of adCmdTableDirect.

Syntax

	recordsetobj.Seek keyvalues,seekoption

	Parameter
	Description

	keyvalues
	Required. An array of values to compare with the values in each column

	seekoption
	Required. A SeekEnum value that specifies the type of seek

SeekEnum Values

	Constant
	Value
	Description

	adSeekFirstEQ
	1
	Seeks the first key equal to keyvalues

	adSeekLastEQ
	2
	Seeks the last key equal to keyvalues

	adSeekAfterEQ
	4
	Seeks either a key equal to keyvalues or just after where that match would have occurred

	adSeekAfter
	8
	Seeks a key just after where a match with keyvalues would have occurred

	adSeekBeforeEQ
	16
	Seeks either a key equal to keyvalues or just before where that match would have occurred

	adSeekBefore
	32
	Seeks a key just before where a match with keyvalues would have occurred

The Supports Method

The Supports method returns a boolean value that defines whether or not a Recordset object supports a specific type of functionality.

Note: This method returns true if the specified feature is supported, false if not.

Syntax

	objRecordset.Supports(cursoroptions)

	Parameter
	Description

	cursoroptions
	Required. One or more CursorOptionEnum values that specifies what functionality this method should test for

CursorOptionEnum

	Constant
	Value
	Description

	adHoldRecords
	0x100
	Retrieves more records or changes the next position without committing all pending changes

	adMovePrevious
	0x200
	Supports the MoveFirst and MovePrevious methods, and Move or GetRows methods

	adBookmark
	0x2000
	Supports the Bookmark property

	adApproxPosition
	0x4000
	Supports the AbsolutePosition and AbsolutePage properties

	adUpdateBatch
	0x10000
	Supports UpdateBatch and CancelBatch methods

	adResync
	0x20000
	Supports the Resync method

	adNotify
	0x40000
	Indicates that the data provider supports notifications (which determines whether Recordset events are supported)

	adFind
	0x80000
	Supports the Find method

	adIndex
	0x100000
	Supports the Index property

	adSeek
	0x200000
	Supports the Seek method

	adAddNew
	0x1000400
	Supports the AddNew method

	adDelete
	0x1000800
	Supports the Delete method

	adUpdate
	0x1008000
	Supports the Update method

The Update Method

The Update method is used to save all changes made to a single record in a Recordset.

Note: This method will not work if the Recordset does not support updates.

Syntax

	objRecordset.Update fields,values

	Parameter
	Description

	fields
	Optional. A field name, or an array of field names or field positions to update

	values
	Optional. A value or an array of values for the field or array of fields you want to update

The UpdateBatch Method

The UpdateBatch method is used to save all changes in a Recordset to the database. This method is used when you are working on a Recordset in batch update mode.

If the save operation fails, a run-time error occurs and the errors are stored in the Errors collection.

Tip: The CancelBatch method cancels all batch updates.

Note: Not all Recordset objects supports batch updating.

Syntax

	bool=objRecordset.UpdateBatch affectrecords

	Parameter
	Description

	affectrecords
	Optional. An AffectEnum value that specifies which records this method will affect.

Note: The value adAffectGroup will generate an error if there are no visible records in the Recordset

AffectEnum Values

	Constant
	Value
	Description

	adAffectCurrent
	1
	Affects only the current record

	adAffectGroup
	2
	Affects only records that satisfy the Filter setting (Filter must be set to a FilterGroupEnum value or an array of Bookmarks)

	adAffectAll
	3
	Affects all records if there is no Filter. Affects only visible records in the current chapter if Filter is set to a string criteria. Affect all rows of the Recordset if Filter is set to a FilterGroupEnum value or an array of Bookmarks

	adAffectAllChapters
	4
	Affects all records in all child Recordset, including those hidden by a currently applied filter

The EndOfRecordset Event

An event is a subroutine that can be called automatically after a specific operation has occurred.

The EndOfRecordset event is triggered when you try to move to a record after the last record in a Recordset. This event can occur if the record pointer is at the end og the Recordset and the MoveNext method is called.

Tip: You can use this event to retrieve more records from a database and append them to the end of the Recordset, and then repeat the MoveNext call.

Note: Before this method returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Syntax

	EndOfRecordset(moredata,status,objrs)

	Parameter
	Description

	moredata
	A boolean value that if true it allows to append more data to the end of the Recordset

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objrs
	The name of the Recordset Object that triggered this event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The FetchComplete Event

The FetchComplete event is triggered after all the records in an asynchronous operation have been fetched into the Recordset.

Syntax

	FetchComplete objErr,status,objRs

	Parameter
	Description

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objRs
	The name of the Recordset object that triggered this event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The FetchProgress Event

The FetchProgress event is triggered periodically in an asynchronous operation, to state how many more records that have been fetched into the Recordset.

Syntax

	FetchProgress progress,maxprogress,status,objRs

	Parameter
	Description

	progress
	The number of records that have been fetched by the operation

	maxprogress
	The maximum number of records that are expected to be fetched

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objRs
	The name of the Recordset object that triggered this event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeField and FieldChangeComplete Events

The WillChangeField Event

The WillChangeField event is triggered before the values of one or more Field Objects are changing.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event.

The FieldChangeComplete Event

The FieldChangeComplete event is triggered after the values of one or more Field Objects have been changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeField event and the FieldChangeComplete event may occur when you set the Value property and calls the Update method with field and value array parameters.

Syntax

	WillChangeField numfields,fields,status,objRs

FieldChangeComplete numfields,fields,objErr,status,objRs

	Parameter
	Description

	numfields
	The number of Field objects in fields

	fields
	An array that contains Field objects with changes

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset Object that triggered this event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillMove and MoveComplete Events

The WillMove Event

The WillMove event is triggered before an operation changes the current position in the Recordset.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notications.

The MoveComplete Event

The MoveComplete event is triggered after the current position in the Recordset has changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillMove event or MoveComplete event may occur when calling one of the following Recordset method: Open, Move, MoveFirst, MoveLast, MoveNext, MovePrevious, AddNew, and Requery. These events may also occur because of the following properties: Filter, Index, Bookmark, AbsolutePage, and AbsolutePosition.

Syntax

	WillMove reason,status,objRs

MoveComplete reason,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnRequery
	7
	An operation requeried the Recordset

	adRsnMove
	10
	An operation moved the record pointer within the Recordset

	adRsnMoveFirst
	12
	An operation moved the record pointer to the first record in the Recordset

	adRsnMoveNext
	13
	An operation moved the record pointer to the next record in the Recordset

	adRsnMovePrevious
	14
	An operation moved the record pointer to the previous record in the Recordset

	adRsnMoveLast
	15
	An operation moved the record pointer to the last record in the Recordset

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeRecord and RecordChangeComplete Events

The WillChangeRecord Event

The WillChangeRecord event is triggered before one or more record changes.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notications.

The RecordChangeComplete Event

The RecordChangeComplete event is triggered after one or more record have been changed.

Note: Before this method returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeRecord event or the RecordChangeComplete event may occur if you change a field in a record using one of the following Recordset operations: Update, Delete, CancelUpdate, AddNew, UpdateBatch, and CancelBatch.

Syntax

	WillChangeRecord reason,numrec,status,objRs

RecordChangeComplete reason,numrec,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	numrec
	Indicates the number of records affected

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset Object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnAddNew
	1
	An operation added a new record

	adRsnDelete
	2
	An operation deleted a record

	adRsnUpdate
	3
	An operation updated an existing record

	adRsnUndoUpdate
	4
	An operation reversed the update of a record

	adRsnUndoAddNew
	5
	An operation reversed the addition of a new record

	adRsnUndoDelete
	6
	An operation reversed the deletion of a record

	adRsnFirstChange
	11
	An operation made the first change to a record

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeRecordset and RecordsetChangeComplete Events

The WillChangeRecordset Event

The WillChangeRecordset event is triggered before an operation changes the Recordset.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notifications.

The RecordsetChangeComplete Event

The RecordsetChangeComplete event is triggered after a Recordset has changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeRecordset and the RecordsetChangeComplete event can occur when calling the Requery method or the Open method of a Recordset object.

Syntax

	WillChangeRecord reason,status,objRs

RecordsetChangeComplete reason,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnRequery
	7
	An operation requeried the Recordset

	adRsnResynch
	8
	An operation resynchronized the Recordset with the database

	adRsnClose
	9
	An operation closed the Recordset

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeField and FieldChangeComplete Events

The WillChangeField Event

The WillChangeField event is triggered before the values of one or more Field Objects are changing.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event.

The FieldChangeComplete Event

The FieldChangeComplete event is triggered after the values of one or more Field Objects have been changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeField event and the FieldChangeComplete event may occur when you set the Value property and calls the Update method with field and value array parameters.

Syntax

	WillChangeField numfields,fields,status,objRs

FieldChangeComplete numfields,fields,objErr,status,objRs

	Parameter
	Description

	numfields
	The number of Field objects in fields

	fields
	An array that contains Field objects with changes

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset Object that triggered this event

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeRecord and RecordChangeComplete Events

The WillChangeRecord Event

The WillChangeRecord event is triggered before one or more record changes.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notications.

The RecordChangeComplete Event

The RecordChangeComplete event is triggered after one or more record have been changed.

Note: Before this method returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeRecord event or the RecordChangeComplete event may occur if you change a field in a record using one of the following Recordset operations: Update, Delete, CancelUpdate, AddNew, UpdateBatch, and CancelBatch.

Syntax

	WillChangeRecord reason,numrec,status,objRs

RecordChangeComplete reason,numrec,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	numrec
	Indicates the number of records affected

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset Object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnAddNew
	1
	An operation added a new record

	adRsnDelete
	2
	An operation deleted a record

	adRsnUpdate
	3
	An operation updated an existing record

	adRsnUndoUpdate
	4
	An operation reversed the update of a record

	adRsnUndoAddNew
	5
	An operation reversed the addition of a new record

	adRsnUndoDelete
	6
	An operation reversed the deletion of a record

	adRsnFirstChange
	11
	An operation made the first change to a record

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillChangeRecordset and RecordsetChangeComplete Events

The WillChangeRecordset Event

The WillChangeRecordset event is triggered before an operation changes the Recordset.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notifications.

The RecordsetChangeComplete Event

The RecordsetChangeComplete event is triggered after a Recordset has changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillChangeRecordset and the RecordsetChangeComplete event can occur when calling the Requery method or the Open method of a Recordset object.

Syntax

	WillChangeRecord reason,status,objRs

RecordsetChangeComplete reason,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnRequery
	7
	An operation requeried the Recordset

	adRsnResynch
	8
	An operation resynchronized the Recordset with the database

	adRsnClose
	9
	An operation closed the Recordset

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

The WillMove and MoveComplete Events

The WillMove Event

The WillMove event is triggered before an operation changes the current position in the Recordset.

Note: Before this event returns, set the status parameter to adStatusCancel to cancel the operation that caused this event or set it to adStatusUnwantedEvent to prevent subsequent notications.

The MoveComplete Event

The MoveComplete event is triggered after the current position in the Recordset has changed.

Note: Before this event returns, set the status parameter to adStatusUnwantedEvent to prevent subsequent notifications.

Note: The WillMove event or MoveComplete event may occur when calling one of the following Recordset method: Open, Move, MoveFirst, MoveLast, MoveNext, MovePrevious, AddNew, and Requery. These events may also occur because of the following properties: Filter, Index, Bookmark, AbsolutePage, and AbsolutePosition.

Syntax

	WillMove reason,status,objRs

MoveComplete reason,objErr,status,objRs

	Parameter
	Description

	reason
	An EventReasonEnum value that specifies the reason for this event

	status
	An EventStatusEnum value that indicates the status of the execution of the event

	objErr
	The name of an Error object that describes the error if status is set to adStatusErrorsOccurred, otherwise it is not set

	objRs
	The name of the Recordset object that triggered this event

EventReasonEnum Values

	Constant
	Value
	Description

	adRsnRequery
	7
	An operation requeried the Recordset

	adRsnMove
	10
	An operation moved the record pointer within the Recordset

	adRsnMoveFirst
	12
	An operation moved the record pointer to the first record in the Recordset

	adRsnMoveNext
	13
	An operation moved the record pointer to the next record in the Recordset

	adRsnMovePrevious
	14
	An operation moved the record pointer to the previous record in the Recordset

	adRsnMoveLast
	15
	An operation moved the record pointer to the last record in the Recordset

EventStatusEnum Values

	Constant
	Value
	Description

	adStatusOK
	1
	The operation that caused the event was successful

	adStatusErrorsOccurred
	2
	The operation that caused the event failed

	adStatusCantDeny
	3
	The operation that caused the event cannot be cancelled

	adStatusCancel
	4
	The operation that caused the event is cancelled

	adStatusUnwantedEvent
	5
	Prevents subsequent notifications before the event method has finished executing

ADO Display

The most common way to display data from a recordset, is to display the data in an HTML table.

Examples

Display records
How to first create a database connection, then a recordset, and then display the data in HTML.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
rs.Open "Select * from Customers", conn

do until rs.EOF
 for each x in rs.Fields
 Response.Write(x.name)
 Response.Write(" = ")
 Response.Write(x.value & "
")
 next
 Response.Write("
")
 rs.MoveNext
loop

rs.close
conn.close
%>

</body>
</html>
Display records in an HTML table
How to display the data from the database table in an HTML table.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")
rs.Open "SELECT Companyname, Contactname FROM Customers", conn
%>

<table border="1" width="100%">
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%></td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Add headers to the HTML table
How to add headers to the HTML table to make it more readable.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%></td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Add colors to the HTML table
How to add colors to the HTML table to make it look nice.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers"
rs.Open sql, conn
%>

<table border="1" width="100%" bgcolor="#fff5ee">
<tr>
<%for each x in rs.Fields
 response.write("<th align='left' bgcolor='#b0c4de'>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%></td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>

Display the Field Names and Field Values

We have a database named "Northwind" and we want to display the data from the "Customers" table (remember to save the file with an .asp extension):

	<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

do until rs.EOF

 for each x in rs.Fields

 Response.Write(x.name)

 Response.Write(" = ")

 Response.Write(x.value & "
")

 next

 Response.Write("
")

 rs.MoveNext

loop

rs.close

conn.close

%>

</body>

</html>

Here is the result:

	CustomerID = ALFKI
CompanyName = Alfreds Futterkiste
ContactName = Maria Anders
ContactTitle = Sales Representative
Address = Obere Str. 57
City = Berlin
PostalCode = 12209
Country = Germany

CustomerID = BERGS
CompanyName = Berglunds snabbköp
ContactName = Christina Berglund
ContactTitle = Order Administrator
Address = Berguvsvägen 8
City = Luleå
PostalCode = S-958 22
Country = Sweden

CustomerID = CENTC
CompanyName = Centro comercial Moctezuma
ContactName = Francisco Chang
ContactTitle = Marketing Manager
Address = Sierras de Granada 9993
City = México D.F.
PostalCode = 05022
Country = Mexico

....
....
....

Display the Field Names and Field Values in an HTML Table

We can also display the data from the "Customers" table inside an HTML table with the following lines (remember to save the file with an .asp extension):

	<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select Companyname, Contactname from

Customers", conn

%>

<table border="1" width="100%">

<%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

<%loop

rs.close

conn.close

%>

</table>

</body>

</html>

Here is the result:

	Alfreds Futterkiste
	Maria Anders

	Berglunds snabbköp
	Christina Berglund

	Centro comercial Moctezuma
	Francisco Chang

	Ernst Handel
	Roland Mendel

	FISSA Fabrica Inter. Salchichas S.A.
	Diego Roel

	Galería del gastrónomo
	Eduardo Saavedra

	Island Trading
	Helen Bennett

	Königlich Essen
	Philip Cramer

	Laughing Bacchus Wine Cellars
	Yoshi Tannamuri

	Magazzini Alimentari Riuniti
	Giovanni Rovelli

	North/South
	Simon Crowther

	Paris spécialités
	Marie Bertrand

	Rattlesnake Canyon Grocery
	Paula Wilson

	Simons bistro
	Jytte Petersen

	The Big Cheese
	Liz Nixon

	Vaffeljernet
	Palle Ibsen

	Wolski Zajazd
	Zbyszek Piestrzeniewicz

Add Headers to the HTML Table

We want to add headers to the HTML table to make it more readable (remember to save the file with an .asp extension):

	<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

%>

<table border="1" width="100%">

 <tr>

 <%for each x in rs.Fields

 response.write("<th>" & x.name & "</th>")

 next%>

 </tr>

 <%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

 <%loop

 rs.close

 conn.close

 %>

</table>

</body>

</html>

Here is the result:

	Companyname
	Contactname

	Alfreds Futterkiste
	Maria Anders

	Berglunds snabbköp
	Christina Berglund

	Centro comercial Moctezuma
	Francisco Chang

	Ernst Handel
	Roland Mendel

	FISSA Fabrica Inter. Salchichas S.A.
	Diego Roel

	Galería del gastrónomo
	Eduardo Saavedra

	Island Trading
	Helen Bennett

	Königlich Essen
	Philip Cramer

	Laughing Bacchus Wine Cellars
	Yoshi Tannamuri

	Magazzini Alimentari Riuniti
	Giovanni Rovelli

	North/South
	Simon Crowther

	Paris spécialités
	Marie Bertrand

	Rattlesnake Canyon Grocery
	Paula Wilson

	Simons bistro
	Jytte Petersen

	The Big Cheese
	Liz Nixon

	Vaffeljernet
	Palle Ibsen

	Wolski Zajazd
	Zbyszek Piestrzeniewicz

Events

Note: You cannot handle events using VBScript or JScript (only Visual Basic, Visual C++, and Visual J++ languages can handle events).

	Event
	Description

	EndOfRecordset
	Triggered when you try to move to a record after the last record

	FetchComplete
	Triggered after all records in an asynchronous operation have been fetched

	FetchProgress
	Triggered periodically in an asynchronous operation, to state how many more records that have been fetched

	FieldChangeComplete
	Triggered after the value of a Field object change

	MoveComplete
	Triggered after the current position in the Recordset has changed

	RecordChangeComplete
	Triggered after a record has changed

	RecordsetChangeComplete
	Triggered after the Recordset has changed

	WillChangeField
	Triggered before the value of a Field object change

	WillChangeRecord
	Triggered before a record change

	WillChangeRecordset
	Triggered before a Recordset change

	WillMove
	Triggered before the current position in the Recordset changes

Collections

	Collection
	Description

	Fields
	Indicates the number of Field objects in the Recordset object

	Properties
	Contains all the Property objects in the Recordset object

The Fields Collection's Properties

	Property
	Description

	Count
	Returns the number of items in the fields collection. Starts at zero.

Example:

countfields = rs.Fields.Count

	Item(named_item/number)
	Returns a specified item in the fields collection.

Example:

itemfields = rs.Fields.Item(1)
or
itemfields = rs.Fields.Item("Name")

The Properties Collection's Properties

	Property
	Description

	Count
	Returns the number of items in the properties collection. Starts at zero.

Example:

countprop = rs.Properties.Count

	Item(named_item/number)
	Returns a specified item in the properties collection.

Example:

itemprop = rs.Properties.Item(1)
or
itemprop = rs.Properties.Item("Name")

Collections

	Collection
	Description

	Errors
	Contains all the Error objects of the Connection object

	Properties
	Contains all the Property objects of the Connection object

ADO Queries

We may use SQL to create queries to specify only a selected set of records and fields to view.

Examples

Display records where "Companyname" starts with an A
How to display only the records from the "Customers" table that have a "Companyname" that starts with an A.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers WHERE CompanyName LIKE 'A%'"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%></td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Display records where "Companyname" is > E
How to display only the records from the "Customers" table that have a "Companyname" that is larger than E.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers WHERE CompanyName>'E'"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%> </td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Display only Spanish customers
How to display only the Spanish customers from the "Customers" table.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers WHERE Country='Spain'"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%> </td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Let the user choose filter
Let the user choose which country to show customers from.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")
sql="SELECT DISTINCT Country FROM Customers ORDER BY Country"
rs.Open sql,conn

country=request.form("country")

%>

<form method="post">
Choose Country <select name="country">
<% do until rs.EOF
 response.write("<option")
 if rs.fields("country")=country then
 response.write(" selected")
 end if
 response.write(">")
 response.write(rs.fields("Country"))
 rs.MoveNext
loop
rs.Close
set rs=Nothing %>
</select>
<input type="submit" value="Show customers">
</form>

<%
if country<>"" then
 sql="SELECT Companyname,Contactname,Country FROM Customers WHERE country='" & country & "'"
 set rs=Server.CreateObject("ADODB.Recordset")
 rs.Open sql,conn
%>
 <table width="100%" cellspacing="0" cellpadding="2" border="1">
 <tr>
 <th>Companyname</th>
 <th>Contactname</th>
 <th>Country</th>
 </tr>
<%
do until rs.EOF
 response.write("<tr>")
 response.write("<td>" & rs.fields("companyname") & "</td>")
 response.write("<td>" & rs.fields("contactname") & "</td>")
 response.write("<td>" & rs.fields("country") & "</td>")
 response.write("</tr>")
 rs.MoveNext
loop
rs.close
conn.Close
set rs=Nothing
set conn=Nothing%>
</table>
<% end if %>

</body>
</html>

Display Selected Data

We want to display only the records from the "Customers" table that have a "Companyname" that starts with an A (remember to save the file with an .asp extension):

	<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers

WHERE CompanyName LIKE 'A%'"

rs.Open sql, conn

%>

<table border="1" width="100%">

 <tr>

 <%for each x in rs.Fields

 response.write("<th>" & x.name & "</th>")

 next%>

 </tr>

 <%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

 <%loop

 rs.close

 conn.close%>

</table>

</body>

</html>

Here is the result:

	Companyname
	Contactname

	Alfreds Futterkiste
	Maria Anders

ADO Sort

We may use SQL to specify how to sort the data in the record set.

Examples

Sort the records on a specified fieldname ascending
How to sort the data on a specified fieldname.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers ORDER BY CompanyName"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%></td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Sort the records on a specified fieldname descending
How to sort the data on a specified fieldname.

<html>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs = Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname, Contactname FROM Customers ORDER BY CompanyName DESC"
rs.Open sql, conn
%>

<table border="1" width="100%">
<tr>
<%for each x in rs.Fields
 response.write("<th>" & x.name & "</th>")
next%>
</tr>
<%do until rs.EOF%>
 <tr>
 <%for each x in rs.Fields%>
 <td><%Response.Write(x.value)%> </td>
 <%next
 rs.MoveNext%>
 </tr>
<%loop
rs.close
conn.close
%>
</table>

</body>
</html>
Let the user choose what column to sort on
Let the user choose what column to sort on.

<html>
<body>

<table border="1" width="100%" bgcolor="#fff5ee">
<tr>
<th align="left" bgcolor="#b0c4de">
Company
</th>
<th align="left" bgcolor="#b0c4de">
Contact
</th>
</tr>
<%
if request.querystring("sort")<>"" then
 sort=request.querystring("sort")
else
 sort="companyname"
end if

set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.Mappath("northwind.mdb"))
set rs=Server.CreateObject("ADODB.recordset")
sql="SELECT Companyname,Contactname FROM Customers ORDER BY " & sort
rs.Open sql,conn

do until rs.EOF
 response.write("<tr>")
 for each x in rs.Fields
 response.write("<td>" & x.value & "</td>")
 next
 rs.MoveNext
 response.write("</tr>")
loop
rs.close
conn.close
%>
</table>

</body>
</html>

Sort the Data

We want to display the "Companyname" and "Contactname" fields from the "Customers" table, ordered by "Companyname" (remember to save the file with an .asp extension):

	<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM

Customers ORDER BY CompanyName"

rs.Open sql, conn

%>

<table border="1" width="100%">

 <tr>

 <%for each x in rs.Fields

 response.write("<th>" & x.name & "</th>")

 next%>

 </tr>

 <%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

 <%loop

 rs.close

 conn.close%>

</table>

</body>

</html>

Here is the result:

	Companyname
	Contactname

	Alfreds Futterkiste
	Maria Anders

	Berglunds snabbköp
	Christina Berglund

	Centro comercial Moctezuma
	Francisco Chang

	Ernst Handel
	Roland Mendel

	FISSA Fabrica Inter. Salchichas S.A.
	Diego Roel

	Galería del gastrónomo
	Eduardo Saavedra

	Island Trading
	Helen Bennett

	Königlich Essen
	Philip Cramer

	Laughing Bacchus Wine Cellars
	Yoshi Tannamuri

	Magazzini Alimentari Riuniti
	Giovanni Rovelli

	North/South
	Simon Crowther

	Paris spécialités
	Marie Bertrand

	Rattlesnake Canyon Grocery
	Paula Wilson

	Simons bistro
	Jytte Petersen

	The Big Cheese
	Liz Nixon

	Vaffeljernet
	Palle Ibsen

	Wolski Zajazd
	Zbyszek Piestrzeniewicz

ADO Demonstration

To demonstrate a small real life ADO application, we have put together a few ADO demos.

Read this First

If you try to update the database, you will get the error message: "You do not have permission to update this database". You get this error because you don't have write access to our server.

BUT, if you copy the code and run it on your own system, you might get the same error. That is because the system might see you as an anonymous internet user when you access the file via your browser. In that case, you have to change the access-rights to get access to the file.

How to change the access-rights of your Access database?

Open Windows Explorer, find the .mdb file. Right-click on the .mdb file and select Properties. Go to the Security tab and set the access-rights here.

List, Edit, Submit, Delete Database Records

List, edit, submit, delete database records
<%option explicit%>
<html>
<head><title>List Database</title></head>
<body>
<%
dim conn,rs,x
set conn=Server.CreateObject("ADODB.Connection")
conn.provider="Microsoft.Jet.OLEDB.4.0"
conn.open(server.mappath("database.mdb"))
set rs=Server.CreateObject("ADODB.Recordset")
rs.open "SELECT * FROM tblGuestBook",conn
%>
<h2>List Database (click on button to edit)</h2>
<table border="1" width="100%">
<tr>
<%
for each x in rs.Fields
 response.write("<th>" & ucase(x.name) & "</th>")
next
%>
</tr>
<%do until rs.EOF%>
<tr>
<form method="post" action="demo_db_edit.asp">
<%for each x in rs.Fields
 if x.name="no" then%>
 <td><input type="submit" name="no" value="<%=x.value%>"></td>
 <%else%>
 <td><%Response.Write(x.value)%></td>
 <%end if
next
%>
</form>
<%rs.MoveNext%>
</tr>
<%
loop
rs.close
set rs=nothing
conn.close
set conn=nothing
%>
</table>

<p>
View source code on how to list a database table in an HTML table
</p>

<p>
Note: If you click on the numbers in the "no" column you will be taken to a new page. On that page you will be able to look at the source code on how to create input fields based on the fields from one record in the database table.
</p>

<p>
Return to previous page
</p>

</body>
</html>

Add a New Record to a Database

Add new record

<html>
<head>
<title>Add DataBase</title>
</head>
<body>

<%
set conn=Server.CreateObject("ADODB.Connection")
conn.Provider="Microsoft.Jet.OLEDB.4.0"
conn.Open(Server.mappath("database.mdb"))
set rs = Server.CreateObject("ADODB.Recordset")
rs.Open "select * from tblGuestBook", conn
%>

<h2>Adding Records</h2>
<form method="post" action="demo_db_new.asp">
<table>
<%
for each x in rs.Fields
 if x.name <> "no" and x.name <> "dateadded" then%>
 <tr>
 <td><%=x.name%></td>
 <td><input name="<%=x.name%>" value="N/A"></td>
 <%
 end if
next
rs.close
conn.close
%>
</tr></table>
<p><input type="submit" name="action" value="Add Record"> </p>
</form>

<p>View source code on how to
create input fields based on the fields in the database table.</p>
<p>Note: If you click on "Add Record" you will be taken to a
new page. On that page you will be able to look at the source code on how to add
a new record to a database table.</p>
<p>Return to previous page</p>
</body>
</html>

(courtsey www.w3schools.com)

