(courtsey www.w3schools.com)

Microsoft.NET ("dotnet")



After you have studied these chapters, you will know what .NET is.

You will also know that .NET will affect the way you will create Web applications in the future.



Table of contents

Introduction to Microsoft .NET
This introduction describes what .NET is and what it holds for the future.

Microsoft .NET Core Building Blocks
This chapter describes the core building blocks of Microsoft .NET.

Microsoft .NET Software
This chapter describes .NET development tools, software, standards and applications

Web Services
This chapter describes the concept of Web Services.

Client and Server Standards
W3Schools' own vision about .NET Client and Server Standards

Applications must be Services
W3Schools' own vision about .NET Application Services

Future Proof Applications
W3Schools' own vision about .NET and Future Proof Internet Applications



Introduction to Microsoft.NET



Microsoft.NET is Microsoft's new Internet strategy.

.NET was originally called NGWS.



NGWS - Next Generation Windows Services

Before the official announcement of .NET, the term NGWS was used for Microsoft's plans for producing an "Internet-based platform of Next Generation Windows Services". 

Steve Ballmer quote January 2000:

"Delivering an Internet-based platform of Next Generation Windows Services is the top priority of our company. The breakthroughs we’re talking about here include changes to the programming model, to the user interface, to the application integration model, the file system, new XML schema....." 



Microsoft.NET

The Microsoft.NET strategy was presented by Microsoft officials to the rest of the world in June 2000:

· .NET is Microsoft's new Internet and Web strategy 

· .NET is NOT a new operating system 

· .NET is a new Internet and Web based infrastructure 

· .NET delivers software as Web Services 

· .NET is a framework for universal services 

· .NET is a server centric computing model 

· .NET will run in any browser on any platform 

· .NET is based on the newest Web standards 



.NET Internet Standards

.NET is built on the following Internet standards:

· HTTP, the communication protocol between Internet Applications 

· XML, the format for exchanging data between Internet Applications 

· SOAP, the standard format for requesting Web Services 

· UDDI, the standard to search and discover Web Services 



.NET Framework

The .NET Framework is the infrastructure for the new Microsoft .NET Platform. 

The .NET Framework is a common environment for building, deploying, and running Web Services and Web Applications.

The .NET Framework contains common class libraries - like ADO.NET, ASP.NET and Windows Forms - to provide advanced standard services that can be integrated into a variety of computer systems.

The .NET Framework is language neutral. Currently it supports C++, C#, Visual Basic, and  JScript (The Microsoft version of JavaScript). Third-party languages - like COBOL, Eiffel, Perl, Python, Smalltalk, and others - will also be available for building future .NET Framework applications.

The new Visual Studio.NET is a common development environment for the new .NET Framework. It provides a feature-rich application execution environment, simplified development and easy integration between a number of different development languages.



Additional Information

· The .NET plan includes a new version of the Windows operating system, a new version of Office, and a variety of new development software for programmers to build Web-based applications. 

· The background for .NET is part of Microsoft's new strategy to keep Windows the dominant operating system in the market, as computing begins to move away from desktop computers toward Internet enabled devices, such as hand-held computers and cell phones. 

· The most visual components of the new .NET framework are the new Internet Information Server 6.0, with ASP.NET and ADO.NET support, Visual Studio.NET software tools to build Web-based software, and new XML support in the SQL Server 2000 database.  

· Bill Gates is supervising the .NET project. 



.NET Building Blocks



.NET Building Blocks is a set of core Internet Services.



Web Services

Web Services provide data and services to other applications.

Future applications will access Web Services via standard Web Formats (HTTP, HTML, XML, and SOAP), with no need to know how the Web Service itself is implemented.

Web Services are main building blocks in the Microsoft .NET programming model.



Standard Communication

Official Web standards (XML, UDDI, SOAP) will be used to describe what Internet data is, and to describe what Web Services can do.

Future Web applications will be built on flexible services that can interact and exchange data, without the loss of integrity.



Internet Storages

.NET offers secure and addressable places to store data and applications on the Web. Allowing all types of Internet devices (PCs, Palmtops, Phones) to access data and applications.

These Web Services are built on Microsoft's existing NTFS, SQL Server, and Exchange technologies.



Internet Dynamic Delivery

Reliable automatic upgrades by demand and installation independent applications.

.NET will support rapid development of applications that can be dynamically reconfigured. 



Internet Identity

.NET supports many different levels of authentication services like passwords, wallets, and smart cards.

These services are built on existing Microsoft Passport and Windows Authentication technologies.



Internet Messaging

.NET supports integration of messaging, e-mail, voice-mail, and fax into one unified Internet Service, targeted for all kinds of PCs or smart Internet devices.

These services are built on existing Hotmail, Exchange and Instant Messenger technologies.



Internet Calendar

.NET supports Internet integration of work, social, and private home calendars. Allowing all types of Internet devices (PCs, Palmtops, Phones) to access the data.

These services are built on existing Outlook and Hotmail technologies.



Internet Directory Services

.NET supports a new kind of directory services that can answer XML based questions about Internet Services, far more exactly than search engines and yellow pages.

These services are built on the UDDI standard.



.NET Software



.NET is a mix of technologies, standards and development tools



Windows.NET

Today, Windows 2000 and Windows XP, is the current backbone of .NET.

In the future, the .NET infrastructure will be integrated into all Microsoft's operating systems, desktop and server products.

Windows.NET is the next generation Windows. It will provide support for all the .NET building blocks and .NET digital media. Windows.NET will be self-supporting with updates via Internet as users need them.

The first release of Windows to incorporate some of the .NET elements (Windows XP) is already available, but the full Windows.NET (code named Blackcomb) is not expected to ship before year 2003 or later.



Office.NET

A new version of Microsoft Office - Office.NET - will have a new .NET architecture based on Internet clients and Web Services.

With Office.NET, browsing, communication, document handling and authoring will be integrated within a XML-based environment which allow users to store their documents on the Internet.



Active Server Pages - ASP.NET

ASP.NET is the latest version of ASP. It includes Web Services to link applications, services and devices using HTTP, HTML, XML and SOAP.

New in ASP.NET:

· New Language Support 

· Programmable Controls 

· Event Driven Programming 

· XML Based Components 

· User Authentication 

· User Accounts and Roles 

· High Scalability 

· Compiled Code 

· Easy Configuration 

· Easy Deployment 

· Not ASP Compatible 

· Includes ADO.NET 

You can read more about ASP.NET and ADO.NET in our ASP.NET Tutorial.



Visual Studio.NET

The latest version of Visual Studio - Visual Studio.NET - incorporates ASP.NET, ADO.NET, Web Services, Web Forms, and language innovations for Visual Basic. The development tools have deep XML support, an XML-based programming model and new object-oriented programming capabilities.



Visual Basic.NET

Visual Basic.NET has added language enhancements, making it a full object-oriented programming language.



SQL Server 2000

SQL Server 2000 is a fully web-enabled database.

SQL Server 2000 has strong support for XML and HTTP which are two of the main infrastructure technologies for .NET.

Some of the most important new SQL Server features are direct access to the database from a browser, query of relational data with results returned as XML, as well as storage of XML in relational formats.



Internet Information Server 6.0

IIS 6.0 has strong support for more programming to take place on the server, to allow the new Web Applications to run in any browser on any platform.



.NET Web Services



Web services are small units of code built to handle a limited task.



What are Web Services?

· Web services are small units of code 

· Web services are designed to handle a limited set of tasks 

· Web services uses XML based communicating protocols 

· Web services are independent of operating systems 

· Web services are independent of programming languages 

· Web services connect people, systems and devices 



Small Units of Code

Web services are small units of code designed to handle a limited set of tasks.

An example of a web service can be a small program designed to supply other applications with the latest stock exchange prices. Another example can be a small program designed to handle credit card payment.



XML Based Web Protocols

Web services use the standard web protocols HTTP, XML, SOAP, WSDL, and UDDI.

HTTP

HTTP (Hypertext Transfer Protocol) is the World Wide Web standard for communication over the Internet. HTTP is standardized by the World Wide Web Consortium (W3C).

XML

XML (eXtensible Markup Language) is a well known standard for storing, carrying, and exchange data. XML is standardized by the W3C.

You can read more about XML in our XML tutorial.

SOAP

SOAP (Simple Object Access Protocol) is a lightweight platform and language neutral communication protocol that allows programs to communicate via standard Internet HTTP. SOAP is standardized by the W3C.

You can read more about SOAP in our SOAP tutorial.

WSDL

WSDL (Web Services Description Language) is an XML-based language used to define web services and to describe how to access them. WSDL is a suggestion by Ariba, IBM and Microsoft for describing services for the W3C XML Activity on XML Protocols.

You can read more about WSDL in our WSDL tutorial.

UDDI

UDDI (Universal Description, Discovery and Integration) is a directory service where businesses can register and search for web services.

UDDI is a public registry, where one can publish and inquire about web services.



Independent of Operating Systems

Since web services use XML based protocols to communicate with other systems, web services are independent of both operating systems and programming languages.

An application calling a web service will always send its requests using XML, and get its answer returned as XML. The calling application will never be concerned about the operating system or the programming language running on the other computer.



Benefits of Web Services

· Easier to communicate between applications 

· Easier to reuse existing services 

· Easier to distribute information to more consumers 

· Rapid development 

Web services make it easier to communicate between different applications. They also make it possible for developers to reuse existing web services instead of writing new ones.

Web services can create new possibilities for many businesses because it provides an easy way to distribute information to a large number of consumers. One example could be flight schedules and ticket reservation systems.



Client and Server Standards



The paragraphs below describes W3Schools' vision about future Internet Distributed Applications.



Executables, C++ (and Java too) must die

Neither C++ nor Java can ever create standard components that can run on all computers. There is no room for these languages in future distributed applications. Executables are not standard. COM objects are not standard, DLL-files are not standard. Registry settings are not standard. INI-files are not standard. None of these components must be allowed to destroy your dream of a standard distributed application that will run on almost any computer in the world.



Clients must be Standard Internet Browsers

Application clients must be standard clients without any additional components. No part of the applications must be stored on client computers. The application must never use, or rely on, any components, dll-files, ini-files, registry settings or any other non standard settings or files stored on the client computer. (Then you can start calling it a Thin Client). Our best suggestion is to let all clients use standard Internet browsers like Internet Explorer or Netscape Navigator running on Windows or Mac computers.



Servers must be Standard Internet Servers

Application servers must be standard Internet servers running standard software without any additional components. The application must never use, or rely on, any components, dll-files, ini-files, registry settings or any other non standard settings or files stored on the server. Our best suggestion is to use a standard Internet server like Internet Information Server (IIS), with a standard request-handler like Active Server Pages (ASP), and a standard database connector like Active Data Objects (ADO). As your data-store you should use a standard SQL based database like Oracle or Microsoft's SQL Server. 



Applications must use Internet Communication

Application clients and servers must not be allowed to communicate via any proprietary protocol. Clients must request servers via a standard Internet protocol and servers must respond via the same protocol. Clients must be able to use any service without having to maintain a permanent connection to the server. Our best suggestion is to let servers be requested with standard stateless Internet HTTP requests. Servers should respond with a standard stateless Internet HTTP response. 



Applications must be Services



The paragraphs below describes W3Schools' vision about future Internet Distributed Applications.



Applications must be a Set of Services

Applications can no longer be allowed to contain large masses of compiled executable code. Applications must be broken down into a number of smaller individual services that are easier to create and easier to maintain. Individual services should be developed and maintained by smaller groups of people. Services are not the same as executables, or components, or DLL's. Services should be answers to submitted requests. Services should be returned as data. Our best suggestion is to develop services as a number of server-side HTML and/or XML pages.



Services must not be Purpose Built

Our history is full of applications that were purpose built for a single task. Many of these applications died before they were introduced, because they could not manage new changes in the requirements. This is a terrible waste of money and time. We (and the people that pay for our applications) want to create flexible applications that are so generalized that they can gracefully support future changes. Future - not even thought about - changes should easily hook into our application without crumbling or destroying it. Our best suggestion is to create flexible standard services that can be used to serve a lot of different requests.



Services must be easy to Create and Edit

Services should not be coded if it can be avoided. If a service has to be coded, our best suggestion is to use scripts. Services should never be compiled into executables. That makes services too hard to access and to edit. Any pre-compiled component used in an application will threaten the possibility of creating an application that can move, scale and gracefully support future extensions or changes. Services should be created and modified by editing their properties and methods, not by changing their executable code. Our best suggestion is to use an XML editor to create and edit services, and to use a standard service engine to provide services by executing the service description. The service descriptions should be stored in a data store like a database or in an XML/HTML file.



Services and data must be Self Describing

Application clients must be able to query a server for a service and to ask for the current server functions. Clients and servers must also be able to exchange data in a way so that both understand each element in the data. Our best suggestion is to use an XML based information vocabulary with a DTD (Document Type Definition) to exchange server functions, and to use XML to exchange data.



Future Proof Applications



The paragraphs below describes W3Schools' vision about future Internet Distributed Applications.



Applications must Support Future Changes

Applications must be aware of future changes and gracefully adjust to changes in either the amount of services or in the exchange format. The application and the data exchange format must support both extensions, removed elements and version controls. Our best suggestion is to use XML with an XML Schema.



Applications must Scale and Relocate

Applications must be able to scale from supporting a few to many thousand requests per day. Server services must be able to spread from one server to many, or to move from one server to another without breaking the application. Our best suggestion is to make server services independent of physical server, and to use standard Internet Uniform Resource Locators (URL) or a directory service to locate the services.



Applications must Support other Applications

Applications should be able to cooperate with other applications. Our best suggestion is create all applications with the same rules, and to link applications together with standard Internet links.



Applications must Support Future Internet Standards

Applications should be made ready to support the new Internet Standards as they emerge from W3C.



PAGE  
10
(courtsey www.w3schools.com)

